Номер патента: 5557

Опубликовано: 28.04.2005

Авторы: Робер Эрик, Ванденхауте Йорис

Есть еще 3 страницы.

Смотреть все страницы или скачать PDF файл.

Формула / Реферат

1. Способ получения ZnCl2 из содержащего Zn первичного и/или вторичного материала, включающий этапы

проведения реакции содержащего Zn материала с хлорирующим агентом для превращения металлов, присутствующих в содержащем Zn материале, в хлориды и выпаривания летучих компонентов продукта этой реакции при температуре, лежащей между температурой плавления упомянутого продукта реакции и температурой кипения ZnCl2, с получением, таким образом, обогащенного цинком хлоридного расплава,

конверсии примесей металлов, содержащихся в упомянутом обогащенном цинком хлоридном расплаве, в нерастворимые оксиды путем прибавления к этому расплаву оксида металла, и

дистилляции ZnCl2 из упомянутого обогащенного цинком хлоридного расплава с получением, таким образом, очищенного ZnCl2 и обедненного цинком хлоридного расплава.

2. Способ по п.1, где в процессе конверсии к упомянутому расплаву добавляют окислительный агент, например, Cl2.

3. Способ по п.1 или 2, где после этапа дистилляции ZnCl2 выполняют отделение нерастворимых оксидов от обедненного цинком хлоридного расплава.

4. Способ по пп.1-3, где в процессе этапа проведения реакции содержащего Zn материала с хлорирующим агентом добавление этого хлорирующего агента регулируют таким образом, чтобы практически все количество Fe, присутствующее в этом содержащем Zn материале, превратилось в FeCl2, и, кроме того, включающий после получения обогащенного цинком хлоридного расплава и перед конверсией этап

испарения Fe в виде хлорида Fe(III) путем добавления к расплаву окислительного хлорирующего агента, например, Cl2, при температуре в пределах от 400 до 730шC.

5. Способ по п.4, включающий этап получения очищенного хлорида Fe(III) путем ректификации хлорида Fe(III) с применением жидкого носителя флегмы.

6. Способ по п.5, где в качестве жидкого носителя флегмы на стадии ректификации хлорида Fe(III) используют очищенный ZnCl2 с этапа дистилляции ZnCl2.

7. Способ по пп.1-5, где этап дистилляции ZnCl2 включает стадии

испарения ZnCl2 и других, менее летучих, хлоридов металлов с получением обедненного Zn хлоридного расплава и обогащенной ZnCl2 газовой фазы; и

ректификации обогащенной ZnCl2 газовой фазы с получением очищенного ZnCl2 и хлоридов металлов, менее летучих по сравнению с ZnCl2.

8. Способ по п.5, где этап дистилляции ZnCl2 включает стадии

испарения ZnCl2 и других, менее летучих, хлоридов металлов с получением обедненного Zn хлоридного расплава и обогащенной ZnCl2 газовой фазы; и

ректификации обогащенной ZnCl2 газовой фазы с получением очищенного ZnCl2 и хлоридов металлов, менее летучих по сравнению с ZnCl2;

и где в качестве жидкого носителя флегмы на стадии ректификации хлорида Fe(III) используют либо очищенный ZnCl2, либо хлориды металлов, менее летучих по сравнению с ZnCl2, со стадии ректификации обогащенной Zn газовой фазы, либо и то, и другое.

9. Способ получения металлического Zn и Cl2, включающий этапы по любому из пп.1-8, и дополнительно включающий этап сухого электролиза очищенного ZnCl2.

10. Способ по п.9, где Cl2 с этапа электролиза возвращают в процесс в качестве хлорирующего агента на этап проведения реакции содержащего Zn материала с хлорирующим агентом.

11. Способ по п.9, где Cl2 с этапа электролиза возвращают в процесс в качестве окислительного агента на этап конверсии.

12. Способ по п.9, где в процессе этапа проведения реакции содержащего Zn материала с хлорирующим агентом добавление этого хлорирующего агента регулируют таким образом, чтобы практически все количество Fe, присутствующее в этом содержащем Zn материале, превратилось в FeCl2, и, кроме того, включающий после получения обогащенного цинком хлоридного расплава и перед конверсией этап

испарения Fe в виде хлорида Fe(III) путем добавления к расплаву окислительного хлорирующего агента, например, Cl2, при температуре в пределах от 400 до 730шC,

и где Cl2 с этапа электролиза возвращают в процесс в качестве окислительного хлорирующего агента на этап испарения Fe в виде хлорида Fe(III).

13. Способ по пп.1-12, включающий этап отделения ценных металлов, присутствующих в обедненном Zn хлоридном расплаве, с получением обедненного металлами хлоридного расплава.

14. Способ по п.13, где обедненный металлами расплав возвращают на этап хлорирования содержащего Zn материала с хлорирующим агентом для использования в качестве растворителя.

 

Текст

Смотреть все

005557 В соответствии с настоящим изобретением предложен способ разделения и извлечения металлов, в частности цинка, из первичного и/или вторичного материала, содержащего цинк. Более конкретно, способ по настоящему изобретению относится к превращению содержащихся в исходном материале металлов в хлориды металлов и последующему извлечению цинка и факультативно других металлов. Наиболее современные способы производства цинка требуют использования оксидного сырья. В настоящее время наиболее широко распространенным способом производства цинка является сульфатный способ, которым в 1997 г. получено 80% общего количества цинка, произведенного в мире. Он включает этапы обжига, выщелачивания, очистки раствора, электроосаждения, плавления и литья. Наиболее распространенным природным сырьем является цинковая обманка (ZnS), которую на первом этапе необходимо обжигать для получения ZnO. Оксид цинка, полученный в результате регенерации в других отраслях промышленности, можно, конечно, использовать непосредственно, без обжига. Процесс электроосаждения цинка легко нарушается под влиянием чрезвычайно низких количеств примесей в электролите, поэтому раствор электролита необходимо тщательно очищать. Это означает,что концентрацию всех элементов, кроме цинка, содержащихся в исходном материале, необходимо резко снизить. Например, как правило, приняты следующие предельные значения: Fe менее чем 5 млн-1, Сu менее чем 0,1 млн-1, Со менее чем 0,2 млн-1, As менее чем 0,01 млн-1, Ge менее чем 0,005 млн-1 и т.п. Поэтому этап очистки раствора является достаточно сложным, включает большое количество различных технологических стадий, и при этом образуются многочисленные отходы различных типов. Некоторые из этих отходов нуждаются в дополнительной переработке с целью извлечения металлов, содержащихся в них. Другие отходы, в том числе большие количества железосодержащих отходов в виде ярозита или гетита, необходимо сбрасывать в земляные отстойники, что требует соблюдения жестких правил охраны окружающей среды. Другим осложнением при сульфатном способе является то, что в целях достижения максимальных выходов по извлечению цинка, а также других ценных примесей, например меди и кадмия, применяют длительный и сложный этап выщелачивания, включающий последовательные операции выщелачивания при различных температурах и уровнях кислотности. В начале XX века Суинберн и Эшкрофт (Swinburne and Ashcroft) в патенте Великобритании 14,278 предложили принципиально иной способ производства цинка из сульфидного сырья. Этот способ известен под названием "хлорной плавки с электролизом расплавленного хлорида". Способ включает- превращение всех металлов, содержащихся в сульфидной руде или исходном концентрате, в хлориды путем проведения их реакции с хлором при одновременном получении элементарной серы;- удаление всех хлоридов кроме ZnCl2 путем цементации с металлическим цинком; и- электролиз расплавленного хлорида цинка с получением чистого цинка и регенерацией хлора. По существу, в первом варианте осуществления способа Эшкрофта, называемом "мокрым вариантом", в результате реакции хлорирования получают хлоридный расплав, содержащий нерастворимые оксиды и породные примеси, которые не превратились в хлориды на этапе хлорирования. Затем весь расплав растворяют в воде с целью отделения нерастворимой фракции и подвергают очистке. Железо и марганец удаляют путем добавления к водному раствору оксида цинка и хлора. Другие металлы отделяют методом цементации путем добавления металлического Рb и/или Zn. Очищенный раствор хлорида цинка затем вновь выпаривают и окончательно обезвоживают хлорид цинка путем предварительного электролиза с применением чернового расходуемого угольного анода, а затем проводят окончательный электролиз цинка. Другой вариант способа отличается цементацией всех металлов с цинком без предварительного растворения в воде и называется "сухим" вариантом. Хлорид цинка также подвергают предварительному электролизу для обеспечения достаточно низкого содержания оксидов и воды. Затем проводят окончательный электролиз для получения расплавленного цинка. Способ Эшкрофта, представляющий значительный интерес, тем не менее, имеет несколько недостатков. Во-первых, как в мокром, так и в сухом варианте на этапе цементации расходуется значительное количество металлического цинка. Кроме того, поскольку для электролиза расплавленного хлорида цинка необходима высокая чистота последнего, из материала необходимо удалять все другие элементы, что означает неселективное удаление с получением остатка, который трудно поддается утилизации с извлечением ценных компонентов. Наконец, особенно в мокром варианте, необходим значительный расход энергии для выпаривания воды и применение предварительного электролиза с расходуемыми анодами для полного высушивания расплава. Эти операции экономически невыгодны. Целью настоящего изобретения является устранение недостатков вышеуказанных способов. Основной целью является усовершенствование обращения с отходами. Это означает необходимость четкого одностадийного разделения различных элементов, присутствующих в исходном материале, с целью максимально возможного исключения получения отходов, которые приходится сбрасывать в окружающую среду, и способствование получению отдельных побочных продуктов, которые пользуются рыночным спросом. Другой целью является обеспечение высокой универсальности в отношении сырья, т.е. возможности отдельного или совместного использования различных первичных или вторичных материалов,содержащих цинк. Другое преимущество перед сульфатным способом заключается в том, что при элек-1 005557 тролизе получается расплавленный цинк, который можно непосредственно подвергать отливке; таким образом, исключается плавление цинковых катодов. Еще одним преимуществом предлагаемого способа является общее снижение энергопотребления. Помимо экономической выгоды это обстоятельство имеет также значение с точки зрения защиты окружающей среды, поскольку снижение энергопотребления означает уменьшение количества газовых выбросов, вызывающих парниковый эффект. В соответствии с настоящим изобретением предложен способ разделения и извлечения металлов, в частности цинка, из первичного и/или вторичного материала, содержащего цинк. Способ получения ZnCl2 из содержащего Zn первичного и/или вторичного материала включает этапы проведения реакции содержащего Zn материала с хлорирующим агентом, например с Сl2, для превращения металлов в хлориды и выпаривания летучих компонентов продукта этой реакции при температуре, лежащей между температурой плавления упомянутого продукта реакции и температурой кипенияZnCl2 с получением, таким образом, обогащенного цинком хлоридного расплава, с последующей дистилляцией ZnCl2 из этого обогащенного цинком хлоридного расплава с получением, таким образом, очищенного ZnCl2 и обедненного цинком хлоридного расплава. Этот процесс может быть дополнен дальнейшим этапом превращения (конверсии) примесей металлов, содержащихся в упомянутом расплаве, в нерастворимые оксиды. Это превращение выполняют путем добавления к расплаву, после получения обогащенного цинком хлоридного расплава и до дистилляции ZnCl2, оксида металла, например, ZnO. В процессе этого превращения к расплаву можно добавлять окислительный агент, например Cl2. Полученные нерастворимые оксиды после конверсии можно выделить из расплава после этапа дистилляции ZnCl2. В процессе проведения реакции содержащего Zn материала с хлорирующим агентом добавление этого хлорирующего агента можно регулировать таким образом, чтобы практически все количество Fe,присутствующее в этом содержащем Zn материале, превратилось в FeCl2. Затем процесс дополняют дальнейшим этапом, включающим вышеупомянутую стадию конверсии, причем после получения обогащенного цинком хлоридного расплава и перед упомянутой конверсией Fe превращают в летучее соединение хлорид Fe(III) путем добавления к расплаву окислительного хлорирующего агента, например Сl2, при температуре в пределах от 400 до 730 С. Хлорид Fe(III), полученный на этом этапе процесса,можно очистить, например, путем ректификации с применением жидкого носителя флегмы. В качестве жидкого носителя флегмы на стадии ректификации хлорида Fe(III) можно использовать очищенныйZnCl2 с этапа дистилляции ZnCl2. Этап дистилляции ZnCl2 в вышеописанных процессах может включать стадии:- ректификации обогащенной ZnCl2 газовой фазы с получением очищенного ZnCl2 и хлоридов металлов, менее летучих по сравнению с ZnCl2. Очищенный ZnCl2 либо очищенный ZnCl2 и хлориды металлов, менее летучих по сравнению сZnCl2, со стадии ректификации обогащенной ZnCl2 газовой фазы можно использовать в качестве жидкого носителя флегмы на стадии ректификации хлорида Fe(III). Любой из вышеописанных процессов может быть дополнен этапом сухого электролиза очищенногоZnCl2 для получения металлического Zn и Сl2. Предпочтительно Сl2 с этапа сухого электролиза затем возвращают в процесс на этап проведения реакции содержащего Zn материала с хлорирующим агентом. Сl2, возвращаемый в процесс с этапа сухого электролиза, можно использовать также в качестве окислительного агента при вышеупомянутой конверсии примесей металлов в нерастворимые оксиды. Кроме того, Сl2 с этапа сухого электролиза можно возвращать в процесс в качестве окислительного хлорирующего агента на вышеупомянутой стадии превращения Fe в летучий хлорид Fe(III). Остаточные ценные металлы, присутствующие в обедненном Zn хлоридном расплаве, предпочтительно отделяют и получают обедненный металлами хлоридный расплав, который можно возвратить в процесс для использования в качестве растворителя на этапе проведения реакции содержащего Zn материала с хлорирующим агентом в первом варианте осуществления настоящего изобретения. На фиг. 1 представлена схема технологических потоков согласно первому варианту осуществления процесса, включающему этапы проведения реакции содержащего Zn материала с хлорирующим агентом(100), дистилляции ZnCl2 (101), электролиза ZnCl2 (105) и отделения ценных металлов (106). На фиг. 2 представлена схема технологических потоков согласно второму варианту, включающему этапы проведения реакции содержащего Zn материала с хлорирующим агентом (100), конверсии хлоридов в оксиды (102), дистилляции ZnCl2 (101), электролиза ZnCl2 (105) и отделения оксидов и ценных металлов (106). На фиг. 3 представлена схема технологических потоков согласно третьему варианту, включающему этапы проведения реакции содержащего Zn материала с хлорирующим агентом (100), превращения Fe в летучий хлорид Fe(III) (103), очистки хлорида Fe(III) (104), конверсии хлоридов в оксиды (102), дистилляции ZnCl2 (101), электролиза ZnCl2 (105) и отделения оксидов и ценных металлов (106). На фиг. 4 представлена схема дистилляции хлорида цинка, включающая этапы испарения обогащенной ZnCl2 фазы (101') и ректификации обогащенной ZnCl2 фазы (101").-2 005557 Согласно способу в соответствии с настоящим изобретением металлы в цинксодержащем первичном и/или вторичном материале превращают в хлориды. На последующих этапах переработки они могут быть извлечены в виде хлоридов. В частности, хлорид цинка отделяют от других хлоридов путем испарения, очищают ректификацией (фракционной дистилляцией) и факультативно подвергают сухому электролизу с целью получения металлического цинка высокого качества с чистотой 99,95% (маc.) или выше. Типы исходных материалов, которые можно использовать в способе по данному изобретению,включают, например, материалы, в которых металлы содержатся в виде сульфидов, оксидов, карбонатов,ферритов или силикатов. Первый вариант осуществления способа представлен на фиг. 1. Исходный материал (1) для процесса, как правило, в форме текучего порошка, вводят в контакт (100) с хлорирующим агентом (2), например с Cl2, S2Cl2 или НСl. Для способствования протеканию реакции можно добавить O2, в частности, в случае применения НСl для хлорирования сульфидных материалов. Контакт исходного материала с хлорирующим агентом можно осуществлять при низких температурах, однако предпочтительно проводить реакцию при температуре выше 400 С с исходным материалом, суспендированным в возвратном солевом расплаве-растворителе, как будет описано ниже. Путем введения в контакт исходного материала с хлорирующим агентом соли металлов, присутствующие в исходном материале, практически полностью превращают в хлориды; непрореагировавшими остаются лишь породные примеси и, возможно, некоторые оксиды с низкой реакционной способностью. Образовавшиеся хлориды металлов могут включать, в зависимости от природы исходного материала, хлориды следующих элементов: Zn, Fe, Сu, Pb, Ca, Ag,Mn, Mg, Na, К, Ba, Co, Ni, Cd, Ga, In, Sn. Если упомянутый первый этап проводят при низкой температуре, то продукты реакции затем нагревают до температуры, превышающей их точку плавления. Таким образом, получают смесь расплавленных солей. Необходимая для этого энергия, как правило, невелика, поскольку реакция хлорирования экзотермична. Затем наиболее летучие продукты реакции испаряют предпочтительно при температуре от 500 до 730 С или более предпочтительно от 550 до 650 С и отводят со стадии хлорирования в виде реакционных паров (19). Эти летучие компоненты включают хлориды металлов, например Та, Hg, Ga, In, Ge, Sn,As и Sb. Если исходный материал содержит сульфиды, то в отсутствие кислорода образуется элементарная сера, которую удаляют с реакционными парами (19). В присутствии кислорода (в виде газа или в составе оксидов) образуется SO2, который также удаляют с реакционными парами (19). Если реакцию хлорирования проводят при достаточно высокой температуре, то испарение серы и других летучих соединений происходит уже в процессе самого хлорирования. Полученный обогащенный цинком хлоридный расплав (3) затем нагревают предпочтительно до его температуры кипения с целью испарения ZnCl2 и его отделения (101) от других хлоридов, например, путем фракционной дистилляции. Таким образом получают две фракции: очищенный ZnCl2 (4) и обедненный цинком расплав (5). Полное удаление ZnCl2 из обогащенного цинком хлоридного расплава не является ни необходимым, ни желательным, особенно в случае, если обедненный расплав должен быть возвращен в процесс для использования в качестве растворителя при проведении реакции хлорирования,поскольку ZnCl2 способствует поддержанию низкой температуры плавления расплава, как правило, ниже 400 С. Очищенный жидкий ZnCl2 можно затем направить в электролизную ванну (105). Эта ванна может быть однополюсной или двухполюсной, с электродами, выполненными, например, из графита. Поскольку расплавленный ZnCl2 имеет низкую электропроводность, расплав в ванне предпочтительно должен содержать хлориды металлов, имеющих более отрицательные редокс-потенциалы по сравнению с Zn2+,например Na+, K+ или Li+, либо их смесь. Типичный состав ванны включает 40 мол.% ZnCl2, 30 мол.% КСl и 30 мол.% NaCl. Электролиз проводят при температуре, превышающей температуру плавления применяемой смеси солей, и предпочтительно при температуре выше температуры плавления Zn (420 С) с целью получения жидкого Zn (15), который можно разливать в изложницы непосредственно из летки. Температуру предпочтительно поддерживают на уровне ниже 600 С во избежание излишнего улетучивания ZnCl2 в виде дыма. Реакция на катоде описывается уравнениемZn2+ + 2 е- = Zn0,а реакция на аноде - уравнением 2 Сl- = Cl2 + 2 е-. Газообразный хлор (16), выделяющийся на аноде, можно возвращать в качестве хлорирующего агента (2) на первый этап процесса (100). Подробности, касающиеся этапа электролиза, можно найти, например, в публикации "Электролизное получение цинка из хлорида цинка в однополюсных и двухполюсных ваннах с солевым расплавом"(Report of Investigation 8524, 1981, Bureau of Mines; S.D.Hill et al.). Обедненный цинком расплав (5) можно подвергнуть дальнейшей переработке на этапе разделения(106). На первой стадии нерастворимые оксиды или породные примеси, трудно превращаемые в хлориды на этапе хлорирования (100), можно отделить осаждением (8).-3 005557 Затем можно отделить ценные металлы (17), например, путем цементации со свинцом или цинком. Эти ценные металлы могут включать, например Сu, Ag и другие драгоценные металлы, например Аu или металлы группы Pt, в соответствии с составом исходного материала. Полученный при этом обедненный металлами расплав (18) можно возвратить на этап хлорирования(100) для использования в качестве растворителя при реакции. Исходный материал диспергируют в этом растворителе, получая суспензию, и барботируют через нее хлорирующий агент. Этот первый вариант осуществления изобретения используют при очень низком содержании Fe в исходном материале. Действительно, в случае присутствия Fe оно подвергается хлорированию: Fe(III),присутствующий в исходном материале, превращается в хлорид Fe(III), a Fe(II) в FeCl2. Хлорид Fe(III),который сам является хлорирующим агентом, может вступать в реакцию с исходным материалом, причем образуется FeCl2. Поскольку в этом варианте не предусматривается существенная очистка от железа,необходимо применять избыток хлорирующего агента для обеспечения образования хлорида Fe(III). Этот хлорид Fe(III) относительно летуч и частично удаляется вместе с другими летучими компонентами с реакционными парами (19). Однако некоторое количество хлорида железа поступает на стадию дистилляции (101) и испаряется вместе с ZnCl2, загрязняя очищенный ZnCl2 (4). Если содержание Fe в исходном материале достаточно низкое, такое загрязнение может оказаться допустимым. В противном случае решение этой проблемы обеспечивается во втором варианте осуществления изобретения, описанном ниже. Второй вариант осуществления процесса представлен на фиг. 2. В этом случае исходный материал(1) вводят в контакт с хлорирующим агентом (2) на этапе хлорирования (100), как описано выше, и продолжают эту операцию до получения обогащенного Zn хлоридного расплава (3). На упомянутом этапе хлорирования (100) добавление хлорирующего агента (2) предпочтительно регулируют таким образом,чтобы практически исключить образование хлорида Fe(III). Это можно обеспечить путем прекращения добавления хлорирующего агента в момент начала выделения бурых паров. Необходимое количество хлорирующего агента можно также рассчитать, исходя из стехиометрии реакции и количества цинксодержащего материала, подлежащего хлорированию. Затем на этапе конверсии (102) к расплаву добавляют соединение, содержащее оксид металла (6),например, РbО, СаО, СаСО 3 или предпочтительно ZnO. Путем добавления оксида можно практически полностью осадить оксиды Fe(III), Mg и Ni (в случае присутствия их в исходном материале) и частично оксиды Fe(II), Mn(II) и Co(II). Затем, или предпочтительно одновременно, к расплаву прибавляют небольшое количество окислительного агента (7), например газообразного хлора, причем Fe(II), Mn и Со окисляются до состояния, обеспечивающего осаждение большей части их оксидов. Однако прибавление слишком большого количества окислительного агента может привести к повторному растворению упомянутых оксидов. После этой конверсии полученный расплав (3") нагревают предпочтительно до температуры его кипения с целью испарения ZnCl2 и отделения его (101) от других хлоридов, например, путем фракционной дистилляции. Как и в первом варианте, получают две фракции: очищенный ZnCl2 (4) и обедненныйZn расплав (5). Очищенный ZnCl2 (4) можно затем направлять в электролизную ванну (105), где его перерабатывают, как описано выше. На аноде выделяется газообразный хлор (16). Этот газ можно возвращать на первый этап процесса(100) в качестве хлорирующего агента (2), но также и на этап конверсии (102) в качестве окислительного агента (7). Обедненный цинком расплав (5) можно затем подвергнуть дальнейшей переработке на этапе разделения (106). На первой стадии оксиды Fe, Mg, Mn, Ni и Со, образовавшиеся на этапе конверсии (102),можно отделить, например, осаждением (8) вместе с нерастворимыми породными примесями, не превращенными в хлориды на этапе хлорирования (100). Затем можно отделить ценные металлы (17). Эти ценные металлы могут включать, например, Сu,Ag и другие драгоценные металлы, например Аu или металлы группы Pt. Полученный при этом обедненный металлами расплав (18) можно возвратить на этап хлорирования (100), как описано выше. В этом варианте Fe, присутствующий в расплаве после хлорирования (100), частично или полностью связывается в виде оксида на этапе конверсии (102) и не загрязняет очищенный ZnCl2 (4). Однако этот способ практически оправдан лишь в случае, если содержание Fe в потоке (3), выходящем со стадии хлорирования (100), является низким, в частности, не превышает 2% (мас.). Действительно, если это содержание слишком высоко, то некоторое количество железа еще присутствует в выходном потоке после этапа конверсии (102), даже в случае прибавления избытка оксида, и может загрязнять очищенный ZnCl2(4). В этом случае решение проблемы обеспечивается в третьем варианте осуществления изобретения,описанном ниже. Этот третий вариант осуществления процесса представлен на фиг. 3. В этом случае Fe предпочтительно удаляется на стадии испарения железа (103), выполняемой после этапа хлорирования (100) и удаления реакционных паров (19). Поэтому на упомянутом этапе хлорирования (100) добавление хлорирующего агента (2) регулируют таким образом, чтобы практически исключить образование хлоридаFe(III), как описано выше. На стадии испарения железа (103) Fe удаляют путем введения в расплав окис-4 005557 лительного хлорирующего агента (10), например, хлора. Образовавшийся хлорид Fe(III) испаряют (9) при температуре в пределах от 400 до 730 С, предпочтительно от 600 до 700 С. 100% удаление при этом не достигается, однако целью этой стадии является снижение концентрации Fe до уровня, при котором оно может быть связано путем прибавления оксидов на последующем этапе конверсии (102), как описано выше применительно ко второму варианту способа. Испаренный хлорид Fe(III) содержит некоторое количество ZnCl2. Эту смесь можно очистить (104) путем селективной конденсации хлорида цинка, например, с применением ректификационной колонны,для получения чистого хлорида Fe(III) (11). Хорошее разделение подразумевает контакт между жидкой и газовой фазами. Поскольку температурный диапазон нахождения хлорида Fe(III) в жидком состоянии весьма ограничен, эту дистилляцию проводят с достаточной эффективностью при использовании жидкого носителя флегмы (12). Таким носителем является предпочтительно возвратный поток, показанный на схеме и описанный ниже, либо хлорид с низким давлением пара при данной рабочей температуре, например NaCl. Поток флегмы (20) из нижней части упомянутой ректификационной колонны, обогащенный жидким носителем флегмы, можно возвращать на этап хлорирования (100) или на этап конверсии(102). Обедненный железом расплав (3'), выходящий со стадии испарения железа (103), затем подвергают конверсии (102), как описано применительно ко второму варианту способа. При этом Fe, уже присутствующий в виде Fe(III), непосредственно осаждается в виде Fe2O3 при добавлении к расплаву соединения,содержащего оксид металла (6), например РbО, СаО, СаСО 3 или предпочтительно ZnO. Оксиды Mg и Ni также осаждаются практически полностью, а оксиды Мn и Со - частично. Можно добавлять к расплаву небольшое количество окислительного агента (7), например газообразного хлора, с целью окисления Мn и Со до состояния, обеспечивающего осаждение большей части их оксидов. После этого этапа полученный конвертированный обедненный Fe расплав (3") нагревают, предпочтительно до температуры его кипения, с целью испарения ZnCl2 и отделения его от других хлоридов,например, путем фракционной дистилляции (101). Как и в предыдущих вариантах, получают очищенныйZnCl2 (4) и обедненный Zn расплав (5). Очищенный ZnCl2 (4) можно затем направлять в электролизную ванну (105), где его перерабатывают, как описано выше. Небольшую долю этого ZnCl2 можно использовать как жидкий носитель флегмы (12) на стадии дистилляции хлорида Fe(III) (104). На аноде электролизной ванны выделяется газообразный хлор (16). Этот газ можно возвращать на первый этап процесса (100) в качестве хлорирующего агента (2), но также и на этап конверсии (102) в качестве окислительного агента (7) и на этап удаления Fe в виде хлорида Fe(III) (103) путем испарения в качестве хлорирующего агента (10). Обедненный цинком расплав (5) можно затем подвергнуть дальнейшей переработке на этапе разделения (106), как и в предыдущих вариантах, для получения оксидного остатка (8) и извлечения ценных металлов (17). Полученный при этом обедненный металлами расплав (18) можно возвратить на этап хлорирования (100), как описано выше. С целью достижения еще лучшего разделения различных элементов, особенно в случае, если исходный материал содержит свинец и/или кадмий, этап дистилляции ZnCl2 (101) проводят в две стадии. Вначале, на стадии быстрого испарения, конвертированный обедненный Fe расплав (3") или, в случае первого варианта, обогащенный цинком хлоридный расплав (3) нагревают предпочтительно до температуры его кипения с целью испарения (101') ZnCl2 вместе с некоторой частью менее летучих хлоридов металлов, например PbCl2 и CdCl2, и получают обедненный цинком расплав (5) и обогащенную ZnCl2 газовую фазу (13). Этот поток (13) ректифицируют в дистилляционной колонне (101"), получая очищенный ZnCl2 (4) и отбираемый из нижней части колонны расплав, состоящий из хлоридов металлов, менее летучих по сравнению с ZnCl2, в частности, РbСl2 и CdCl2 (14). Этот расплав можно подвергнуть дальнейшей переработке для извлечения упомянутых ценных компонентов. Например, смесь РbСl2 и CdCl2 можно подвергнуть электролизу и получить металлические Рb и Сd. Оба металла можно затем легко отделить друг от друга, например, путем испарения. Часть полученных хлоридов металлов, менее летучих по сравнению с ZnCl2 (14), можно также использовать в качестве жидкого носителя флегмы (12) для дистилляции хлорида Fe(III) (104). Очищенный ZnCl2 (4) и обедненный цинком хлоридный расплав (5) можно подвергнуть дальнейшей переработке, как описано для вариантов 1-3. Нижеприведенные примеры иллюстрируют основные этапы способа по данному изобретению. Пример 1. Хлорирование цинковой обманки Этот пример показывает пригодность рассматриваемого способа для выщелачивания концентрата цинковой обманки (этап 100 процесса: проведение реакции цинксодержащего материала с хлорирующим агентом). Приготовляли 2 кг расплава-растворителя путем смешивания хлоридов в кварцевом реакторе. Состав растворителя был следующим: 51 мол.% ZnCl2, 11,3 мол.% РbCl2, 3 мол.% CdCl2, 2 мол.% КСl, 12,1 мол.% NaCl, 17,4 мол.% СаСl2, 2,4 мол.% CuCl, 0,8 мол.% BaCl2. Эту смесь нагревали до 600 С в атмосфере азота. К расплаву постепенно добавляли 1,6 кг концентрата цинковой обманки. Обманка содержала 50,6 маc.% Zn, 9,2 маc.% Fe, 1,8 маc.% Pb, 0,1 маc.% Cd, 0,23 маc.% Сu, 33 маc.% S. Через кварцевую-5 005557 инжекционную трубку, доходящую до дна реактора, вводили газообразный хлор со скоростью 500 см 3/мин в течение 13 ч. Серу отводили из реактора и собирали в конденсаторе. С целью определения эффективности хлорирования полученный расплав растворяли в 5 л 5 М раствора NaCl, способствующего растворению образовавшихся хлоридов. Твердый остаток отделяли от раствора фильтрованием и анализировали на содержание основных металлов. Выход по экстракции представлен в табл. 1. Таблица 1. Выход по экстракции основных металлов в процессе хлорирования концентрата цинковой обманки Рассматриваемый способ обеспечивает очень высокие выходы по экстракции основных компонентов цинковой обманки за одну стадию выщелачивания. Пример 2. Хлорирование оксидного исходного материала Этот пример показывает пригодность рассматриваемого способа для выщелачивания оксидного исходного материала (этап 100 процесса: проведение реакции цинксодержащего материала с хлорирующим агентом). Приготовляли 2 кг расплава-растворителя путем смешивания хлоридов в кварцевом реакторе. Состав растворителя был следующим: 51 мол.% ZnCl2, 11,3 мол.% РbCl2, 3 мол.% CdCl2, 2 мол.% КСl, 12,1 мол.% NaCl, 17,4 мол.% СаСl2, 2,4 мол.% CuCl, 0,8 мол.% ВаСl2. Эту смесь нагревали до 600 С в атмосфере азота. К расплаву постепенно добавляли 1 кг оксида Вельца (Waelz). Этот оксид содержал 56 маc.% Zn, 3,32 маc.% Fe, 7,9 маc.% Pb. Через кварцевую инжекционную трубку, доходящую до дна реактора, вводили газообразный хлор со скоростью 500 см 3/мин в течение 10 ч. С целью определения эффективности хлорирования полученный расплав растворяли в 5 л 5 М раствора NaCl, способствующего растворению образовавшихся хлоридов. Твердый остаток отделяли от раствора фильтрованием и анализировали на содержание основных металлов. Выход по экстракции представлен в табл. 2. Таблица 2. Выход по экстракции основных металлов в процессе хлорирования оксида Рассматриваемый способ обеспечивает очень высокие выходы по экстракции Zn и Рb; выход по Fe ниже, чем в случае цинковой обманки, поскольку Fе 2 О 3 обладает пониженной реакционной способностью по сравнению с сульфидом железа. Пример 3. Удаление хлорида Fe(III) Этот пример показывает пригодность рассматриваемого способа для удаления железа из расплава(этап 103 процесса: испарение Fe в виде хлорида Fe(III. Расплав приготовляли путем хлорирования 2 кг цинковой обманки газообразным хлором в 1,8 кг расплава-растворителя. Цинковая обманка и расплав-растворитель имели составы, указанные в примере 1. После хлорирования расплав содержал 4% (маc.) Fe; это количество слишком велико для связывания в виде Fе 2 О 3 путем добавления, например, ZnO, как описано выше. В упомянутый расплав вводили газообразный хлор со скоростью 500 см 3/мин в течение 6 ч. Температура расплава была 620 С. Эксперимент прекратили, когда выделение бурых паров (указывающее на присутствие хлорида Fe(III почти прекратилось. Анализ расплава показал, что остаточное содержаниеFe составило 0,21 маc.% и, таким образом, удалено 95,8% Fe. Достигнутое содержание Fe существенно ниже предельного (2 маc.%), и, таким образом, его можно связать в виде оксида. В этих условиях загрязнением ZnCl2 железом можно пренебречь. Пример 4. Осаждение оксидов Этот пример показывает пригодность рассматриваемого способа для осаждения оксидов Fe, Mg,Mn, Со и Ni (этап 102 процесса: конверсия). Приготовляли расплав следующего состава (маc.%): 46,2 ZnCl2, 17,1 PbCl2, 14,1 СаС 12, 3,8 CuCl, 3 СdСl2,2,7 MnCl2, 2,4 FeCl3, 2,4 CoCl2, 2 MgCl2, 1,9 NiCl2, 1,3 AgCl, 1,1 ВаСl2, 1 KCl, 0,9 NaCl. Общая масса составля-6 005557 ла 1 кг. Соли нагревали, плавили и поддерживали температуру расплава 600 С. К расплаву добавляли 110 г ZnO, а затем барботировали через смесь Сl2. Всего было добавлено 44 г Сl2. Определяли количества металлов в растворе и в твердом остатке. Степень осаждения металлов при использовании только ZnO и при последующем добавлении хлора представлена в табл. 3. Таблица 3. Степень осаждения металлов Таким образом, осаждение Mg, Ni, Mn и Со, а также связывание остаточных количеств Fe путем добавления ZnO и Cl2 является эффективным и обеспечивает удаление этих элементов. Пример 5. Быстрое испарение ZnCl2 Этот пример показывает пригодность рассматриваемого способа для отделения ZnCl2, РbСl2 и CdCl2 от остальных компонентов расплава (этап 101' процесса: испарение ZnCl2). Расплав приготовляли путем хлорирования 2 кг цинковой обманки и удаления Fe, как описано в примере 3. К расплаву прибавляли 50 г ZnO для связывания остаточного железа в виде Fе 2 О 3. На последующей стадии температуру расплава повышали до 800 С для испарения ZnCl2 вместе с некоторой частью PbCl2 и CdCl2. Было испарено 70% начального количества ZnCl2. Полученные пары конденсировали в реакторе с воздушным охлаждением и подвергали анализу. Они состояли из ZnCl2 и некоторых других элементов. Концентрации этих элементов до и после быстрого испарения и степень извлечения в процентах представлены в табл. 4. Таблица 4. Концентрации металлов до и после быстрого испарения Эти результаты показывают, что рассматриваемый способ обеспечивает удовлетворительное извлечение ZnCl2 из хлоридного расплава вместе с достаточным количеством PbCl2 и CdCl2 для достижения эффективной очистки. Очищенный материал лишь незначительно загрязнен Fe, Сu и Mn. Пример 6. Ректификация ZnCl2 Этот пример показывает пригодность рассматриваемого способа для получения чистого ZnCl2 (этап 101" процесса: ректификация обогащенной Zn газовой фазы). Расплав, полученный после быстрого испарения, как описано в примере 5, подвергали дистилляции с применением ректификационной колонны. Расплав, помещенный в куб, расположенный под колонной,нагревали до 800 С. Дистиллят конденсировали и анализировали. Суммарное содержание примесей в этом расплаве составляло около 10 млн-1. Наиболее важные примеси представлены в табл. 5. Таблица 5. Примеси в ZnCl2 после ректификации Таким образом, способ обеспечивает получение ZnCl2 высокой чистоты. Из этого ZnCl2 путем электролиза можно получить металлический Zn, соответствующий как минимум техническим требованиям к стандартному продукту квалификации "особой чистоты". Перечень использованных числовых обозначений Этапы процесса 100 проведение реакции цинксодержащего материала с хлорирующим агентом 101 дистилляция ZnCl2 102 конверсия 103 испарение Fe в виде хлорида Fe(III) 104 очистка хлорида Fe(III) 105 электролиз 106 отделение ценных металлов 101' испарение ZnCl2 101" ректификация обогащенной ZnCl2 газовой фазы-7 005557 Технологические потоки 1 Цинксодержащий первичный и/или вторичный исходный материал 2 хлорирующий агент 3 обогащенный Zn хлоридный расплав 3' обедненный Fe расплав 3" конвертированный обедненный Fe расплав 4 очищенный ZnCl2 5 обедненный Zn хлоридный расплав 6 оксид металла 7 окислительный агент 8 остаток нерастворимых оксидов 9 хлорид Fe(III) 10 окислительный хлорирующий агент 11 очищенный хлорид Fe(III) 12 жидкий носитель флегмы 13 обогащенная ZnCl2 газовая фаза 14 хлориды металлов, менее летучие по сравнению с ZnCl2 15 металлический Zn 16 Cl2 17 ценные металлы 18 обедненный металлами хлоридный расплав 19 реакционные пары с этапа хлорирования 20 поток флегмы из колонны ректификации хлорида Fe(III) ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ получения ZnCl2 из содержащего Zn первичного и/или вторичного материала, включающий этапы проведения реакции содержащего Zn материала с хлорирующим агентом для превращения металлов, присутствующих в содержащем Zn материале, в хлориды и выпаривания летучих компонентов продукта этой реакции при температуре, лежащей между температурой плавления упомянутого продукта реакции и температурой кипения ZnCl2, с получением, таким образом, обогащенного цинком хлоридного расплава,конверсии примесей металлов, содержащихся в упомянутом обогащенном цинком хлоридном расплаве, в нерастворимые оксиды путем прибавления к этому расплаву оксида металла, и дистилляции ZnCl2 из упомянутого обогащенного цинком хлоридного расплава с получением, таким образом, очищенного ZnCl2 и обедненного цинком хлоридного расплава. 2. Способ по п.1, где в процессе конверсии к упомянутому расплаву добавляют окислительный агент, например Сl2. 3. Способ по п.1 или 2, где после этапа дистилляции ZnCl2 выполняют отделение нерастворимых оксидов от обедненного цинком хлоридного расплава. 4. Способ по пп.1-3, где в процессе этапа проведения реакции содержащего Zn материала с хлорирующим агентом добавление этого хлорирующего агента регулируют таким образом, чтобы практически все количество Fe, присутствующее в этом содержащем Zn материале, превратилось в FеСl2, и, кроме того, включающий после получения обогащенного цинком хлоридного расплава и перед конверсией этап испарения Fe в виде хлорида Fe(III) путем добавления к расплаву окислительного хлорирующего агента, например Сl2, при температуре в пределах от 400 до 730 С. 5. Способ по п.4, включающий этап получения очищенного хлорида Fe(III) путем ректификации хлорида Fe(III) с применением жидкого носителя флегмы. 6. Способ по п.5, где в качестве жидкого носителя флегмы на стадии ректификации хлорида Fe(III) используют очищенный ZnCl2 с этапа дистилляции ZnCl2. 7. Способ по пп.1-5, где этап дистилляции ZnCl2 включает стадии испарения ZnCl2 и других, менее летучих, хлоридов металлов с получением обедненного Zn хлоридного расплава и обогащенной ZnCl2 газовой фазы; и ректификации обогащенной ZnCl2 газовой фазы с получением очищенного ZnCl2 и хлоридов металлов, менее летучих по сравнению с ZnCl2. 8. Способ по п.5, где этап дистилляции ZnCl2 включает стадии испарения ZnCl2 и других, менее летучих, хлоридов металлов с получением обедненного Zn хлоридного расплава и обогащенной ZnCl2 газовой фазы; и ректификации обогащенной ZnCl2 газовой фазы с получением очищенного ZnCl2 и хлоридов металлов, менее летучих по сравнению с ZnCl2;-8 005557 и где в качестве жидкого носителя флегмы на стадии ректификации хлорида Fe(III) используют либо очищенный ZnCl2, либо хлориды металлов, менее летучих по сравнению с ZnCl2, со стадии ректификации обогащенной Zn газовой фазы, либо и то, и другое. 9. Способ получения металлического Zn и Cl2, включающий этапы по любому из пп.1-8, и дополнительно включающий этап сухого электролиза очищенного ZnCl2. 10. Способ по п.9, где Сl2 с этапа электролиза возвращают в процесс в качестве хлорирующего агента на этап проведения реакции содержащего Zn материала с хлорирующим агентом. 11. Способ по п.9, где Cl2 с этапа электролиза возвращают в процесс в качестве окислительного агента на этап конверсии. 12. Способ по п.9, где в процессе этапа проведения реакции содержащего Zn материала с хлорирующим агентом добавление этого хлорирующего агента регулируют таким образом, чтобы практически все количество Fe, присутствующее в этом содержащем Zn материале, превратилось в FeCl2, и, кроме того, включающий после получения обогащенного цинком хлоридного расплава и перед конверсией этап испарения Fe в виде хлорида Fe(III) путем добавления к расплаву окислительного хлорирующего агента,например, Сl2, при температуре в пределах от 400 до 730 С, и где Сl2 с этапа электролиза возвращают в процесс в качестве окислительного хлорирующего агента на этап испарения Fe в виде хлорида Fe(III). 13. Способ по пп.1-12, включающий этап отделения ценных металлов, присутствующих в обедненном Zn хлоридном расплаве, с получением обедненного металлами хлоридного расплава. 14. Способ по п.13, где обедненный металлами расплав возвращают на этап хлорирования содержащего Zn материала с хлорирующим агентом для использования в качестве растворителя.

МПК / Метки

МПК: C22B 19/00, C25C 3/34, C01G 9/04

Метки: способ, получения, цинка

Код ссылки

<a href="https://eas.patents.su/11-5557-sposob-polucheniya-cinka.html" rel="bookmark" title="База патентов Евразийского Союза">Способ получения цинка</a>

Похожие патенты