Способ и устройство для проведения реакций в реакторе с щелевидными реакционными пространствами
Номер патента: 4758
Опубликовано: 26.08.2004
Авторы: Вильднер Вернер, Бальдуф Торстен, Хемме Ина, Бертш-Франк Биргит, Марковц Георг, Ролльманн Юрген, Шютте Рюдигер, Беккер Катрин
Формула / Реферат
1. Способ проведения реакций по меньшей мере между двумя текучими реагентами (R1 и R2) с использованием реактора, в котором расположены стеновые элементы (1), щелевидные реакционные пространства (3) и полости (5) для прохода текучего теплоносителя, отличающийся тем, что
а) реакционные пространства (3) имеют форму щелей и образованы в каждом случае между боковыми поверхностями двух по существу равных по ширине и по существу имеющих форму прямых параллелепипедов стеновых элементов (1), которые изготовлены в виде пластин из твердого материала и расположены с возможностью замены в блоке (24) внутри фактически прямого параллелепипеда,
б) реагенты (R1 и R2) попадают в щелевидные реакционные пространства (3) через зоны, расположенные на краях реакционных пространств на одной и той же стороне блока (24), и проходят через реакционные пространства (3) в виде реакционной смеси в одинаковых направлениях параллельными потоками и
в) текучий теплоноситель проходит через трубчатые полости (5), расположенные внутри стеновых элементов (1), при этом ширина (s) щели реакционных пространств (3) составляет от 0,05 до 5 мм.
2. Способ по п.1, отличающийся тем, что по меньшей мере один реагент проходит через стеновой элемент (1) и попадает в данное реакционное пространство (3) по меньшей мере через одну боковую поверхность (2) стеновых элементов (1).
3. Способ по п.1, отличающийся тем, что по меньшей мере на одной стороне блока (24) расположена распределительная среда (37, 38), из которой реагенты (R1, R2) попадают в реакционные пространства (3).
4. Способ по п.3, отличающийся тем, что в качестве распределительной среды (37) используют изготовленный из твердого материала распределитель с группой каналов (39, 40) с таким небольшим поперечным сечением, которое препятствует распространению пламени, могущего возникнуть при работе с реагентами (R1, R2), образующими взрывоопасную смесь.
5. Способ по п.3, отличающийся тем, что в качестве распределительной среды (38) используют наполнитель из материала с такими небольшими по размерам частицами и небольшими промежутками между частицами, которые препятствуют распространению пламени, могущего возникнуть при работе с реагентами (R1, R2), образующими взрывоопасную смесь.
6. Способ по п.3, отличающийся тем, что при работе со взрывоопасными реакционными смесями используют узкие щели с такой шириной, которая препятствует распространению могущего возникнуть в щели пламени.
7. Способ по п.1, отличающийся тем, что реакционные пространства (3) заполняют гранулированным катализатором.
8. Способ по п.1, отличающийся тем, что на образующие реакционные пространства (3) боковые поверхности (2) стеновых элементов (1), по меньшей мере, в местах расположения катализатора наносят покрытие.
9. Способ по п.1, отличающийся тем, что для увеличения площади поверхности реакционных пространств (1) образующим их боковым поверхностям (2) стеновых элементов (23) придают определенный профиль.
10. Способ по п.1, отличающийся тем, что стеновые элементы (1), по меньшей мере частично, погружают в растворитель (27).
11. Способ по п.1, отличающийся тем, что в качестве растворителя (27) используют воду.
12. Способ по п.10, отличающийся тем, что к растворителю (27) добавляют по меньшей мере один стабилизатор, препятствующий разложению и/или снижению качества полученного продукта реакции.
13. Способ по любому из пп.1-12, отличающийся тем, что его используют для прямого синтеза перекиси водорода из водорода и кислорода или содержащего кислород (O2) газа в присутствии катализатора, содержащего по меньшей мере один элемент 8-й и/или 1-й подгруппы Периодической таблицы, и воды или водяного пара.
14. Способ по любому из пп.1-12, отличающийся тем, что его используют для получения пропеналя из пропена и содержащего кислород (O2) газа в присутствии катализатора.
15. Способ по любому из пп.1-12, отличающийся тем, что его используют для получения акриловой кислоты из пропена и содержащего кислород (O2) газа в присутствии катализатора и промотора.
16. Способ по любому из пп.1-12, отличающийся тем, что его используют для получения оксида этилена или оксида пропилена из этилена или пропилена соответственно и газообразной перекиси водорода в присутствии оксидного или кремнийсодержащего катализатора.
17. Устройство для проведения реакций между по меньшей мере двумя текучими реагентами (R1 и R2) с использованием реактора, в котором расположены стеновые элементы (1), щелевидные реакционные пространства (3) и полости (5) для прохода текучего теплоносителя, отличающееся тем, что
а) реакционные пространства (3) имеют форму щелей и образованы в каждом случае между боковыми поверхностями (2) двух по существу равных по ширине и по существу имеющих форму прямых параллелепипедов стеновых элементов (1), которые изготовлены в виде пластин из твердого материала и расположены с возможностью замены в блоке (24) внутри фактически прямого параллелепипеда,
б) реагенты (R1 и R2) попадают в щелевидные реакционные пространства (3) через зоны, расположенные на краях реакционных пространств на одной и той же стороне блока (24), и проходят через реакционные пространства (3) в виде реакционной смеси в одинаковых направлениях параллельными потоками и
в) в стеновых элементах (1) выполнены трубчатые полости (5), предназначенные для прохода через стеновые элементы (1) текучего теплоносителя, при этом ширина (s) щели реакционных пространств (3) составляет от 0,05 до 5 мм.
18. Устройство по п.17, отличающееся наличием в стеновых элементах (1) в каждом случае по меньшей мере одного канала (16) для подачи по меньшей мере одного реагента, который проходит по меньшей мере через одну боковую поверхность (2) стеновых элементов (3) и ведет в соответствующее реакционное пространство (3).
19. Устройство по п.17, отличающееся наличием расположенной по меньшей мере на одной стороне блока (24) распределительной среды (37, 38), из которой реагенты (R1, R2) попадают в реакционные пространства (3).
20. Устройство по п.19, отличающееся тем, что распределительная среда (37) представляет собой изготовленный из твердого материала распределитель с группой каналов (39, 40) с таким небольшим поперечным сечением, которое препятствует распространению пламени, возникающего при работе с реагентами (R1, R2), образующими взрывоопасную смесь.
21. Устройство по п.19, отличающееся тем, что распределительная среда (38) представляет собой наполнитель из материала с такими небольшими по размерам частицами и небольшими промежутками между частицами, которые препятствуют распространению пламени, возникающего при работе с реагентами (R1, R2), образующими взрывоопасную смесь.
22. Устройство по п.17, отличающееся тем, что при работе со взрывоопасными реакционными смесями используются узкие щели с такой шириной, которая препятствует распространению возникающего в щели пламени.
23. Устройство по п.17, отличающееся тем, что реакционные пространства (3) заполнены гранулированным катализатором.
24. Устройство по п.17, отличающееся тем, что на образующие реакционные пространства (3) боковые поверхности (2) стеновых элементов (1), по меньшей мере, в местах расположения катализатора нанесено покрытие.
25. Устройство по п.17, отличающееся тем, что образующие реакционные пространства (3) боковые поверхности (2) стеновых элементов (1) имеют определенный профиль, увеличивающий площадь поверхности реакционных пространств (3).
26. Устройство по п.17, отличающееся тем, что реакционные пространства (3) на узких сторонах (6) стеновых элементов (1), расположенных параллельно направлению движения реагентов (R1, R2), закрыты пластинами (41) с отверстиями (43), через которые теплоноситель подается внутрь стеновых элементов (1) и выходит из них.
27. Устройство по п.26, отличающееся наличием в пластинах (41) отверстий (42) для подвода по меньшей мере одного реагента (R1, R2) в стеновые элементы (1) и наличием в стеновых элементах (1) по меньшей мере одного подводящего канала (16), который через выходэых отверстия (17) сообщается в каждом случае с одним из реакционных пространств (3).
28. Устройство по п.26, отличающееся наличием в стеновых элементах (1) группы расположенных параллельно их боковым поверхностям (2) внутренних полостей (5), концы которых закрыты пластинами (41), которые установлены на узких сторонах (6) стеновых элементов (1) и имеют отверстия (43) для прохода текучего теплоносителя, оси которых совпадают с осями внутренних полостей (5) стеновых элементов.
29. Устройство по пп.26 или 27, отличающееся наличием на внешних сторонах (44) пластин (41) расположенных на входе в выполненные в них отверстия (42, 43) под прямыми углами к стеновым элементам (1) каналов (45, 46) для прохода по меньшей мере одного реагента (R1, R2) и/или теплоносителя.
30. Устройство по п.29, отличающееся наличием расположенного на внешних сторонах (44) пластин (41) распределителя (47) с каналами (45, 46), которые идут к отверстиям (42, 43) пластин (41).
31. Устройство по п.17, отличающееся тем, что стеновые элементы (1) объединены в блок (24), расположенный в корпусе (25) высокого давления.
32. Устройство по пп.19 или 31, отличающееся тем, что корпус (25) высокого давления закрыт крышкой (28) с двумя патрубками (34, 35) для подачи внутрь корпуса двух реагентов (R1, R2) и перегородкой (29), которая прижимается к распределительной среде (37, 38).
33. Устройство по п.17, отличающееся тем, что предусмотрена возможность изменять ширину (s) щелей реакционных пространств (3) изменением толщины прокладок (13).
Текст
1 Область техники,к которой относится изобретение Настоящее изобретение относится к способу проведения реакций по меньшей мере между двумя текучими реагентами в реакторе, в котором расположены стеновые элементы, щелевидные реакционные пространства и полости для прохода текучего теплоносителя. Предпосылки создания изобретения В DE 3342749 А 1 описан реактор пластинчатого типа, предназначенный для проведения химических реакций синтеза при высоком давлении, в котором используются имеющие форму прямых параллелепипедов пластины с образующими заполненную катализатором камеру металлическими стенками, две из которых,имеющие наибольшие размеры, выполнены газонепроницаемыми. Две расположенные друг против друга узкие стороны прямого параллелепипеда открыты или имеют отверстия, предназначенные для прохода реакционных газов в горизонтальном или вертикальном направлении через гранулированный катализатор. Для нагрева или охлаждения катализатора (в зависимости от протекающей реакции - экзотермической или эндотермической) предназначены расположенные в камерах каналы, через которые прокачивается соответствующий теплоноситель. Такие охлаждающие каналы можно выполнить с помощью расположенных поперечно друг другу полос из металла или гофрированных либо профилированных иным образом металлических листов, прочно соединенных, например сваркой,с гладкими стенками пластин. Все образующие камеры пластины, которые собираются в цилиндрическом реакторе и поэтому имеют разные размеры, объединены в группы, через которые последовательно проходят реакционные газы. Установки с реакторами такого типа требуют очень тщательной конструктивной проработки и отличаются сравнительно низкой производительностью, которую можно повысить за счет увеличения длины реактора и/или использования нескольких параллельно соединенных реакторов. В ЕР 0691701 А 1 описан предназначенный для проведения реакций эндотермического типа реформинг-генератор пакетного типа с заполненными регенерирующей тепло средой и соединенными друг с другом по потоку конверсионными камерами, расположенными в каждом случае между двумя камерами сгорания. В таком реформинг-генераторе газы в конверсионных камерах и в камерах сгорания движутся в противоположном направлении, и в каждом случае перед соединенными по потоку заполненными регенерирующей тепло средой конверсионными камерами установлены плоские полупроницаемые перегородки. В качестве регенерирующей тепло среды можно использовать, например, имеющие сферическую форму частицы оксида алюминия. Для повышения эф 004758 2 фективности теплообмена между отдельными камерами установлены горизонтальные теплопроводящие листы с отверстиями для прохода топлива в зону нагрева. Между каждой группой из трех камер расположена камера для распределения топлива. Предложенный в указанной выше публикации реформинг-генератор, имеющий исключительно сложную конструкцию, не предназначен и не пригоден для проведения экзотермических реакций, поскольку в отличие от обычных реакторов он не имеет охлаждающих каналов. Отличительной особенностью этого реформинг-генератора, не предназначенного для работы при высоких давлениях, является его сравнительно небольшая длина, которая уменьшена благодаря отсутствию в нем отдельных зон для нагрева исходных реагентов. В DE 4444364 С 2 описан предназначенный для проведения экзотермических реакций между газами реактор с прямоугольным в поперечном сечении корпусом и неподвижным слоем катализатора, который разделен на части вертикальными перегородками, образующими отдельные каналы для прохода газа и теплообменник пластинчатого типа. В альтернативном варианте в каждом случае над каналами для прохода газа и под ними имеются не заполненные катализатором промежутки. Выходящие сверху из некоторых каналов неподвижного слоя газы проходят через боковые каналы, расположенные под неподвижным слоем, и возвращаются обратно в другие соответствующие каналы неподвижного слоя, которые соединены с выходным соплом. Реактор, предложенный в этой публикации, не имеет никаких устройств для подвода тепла и поэтому не предназначен для проведения эндотермических реакций. Кроме того, его корпус в поперечном сечении имеет прямоугольную форму и поэтому не пригоден для работы при высоких давлениях. В ЕР 0754492 А 2 описан реактор пластинчатого типа для текучих реагентов, выполненный в виде неподвижного смесителятеплообменника. Предложенный в этой заявке реактор состоит из большого количества уложенных одна на другую пластин, самая нижняя из которых не имеет выходящих наружу отверстий, которые выполнены в самой верхней пластине и предназначены для входа и выхода текучих реагентов или текучих продуктов реакции и текучего теплоносителя. Кроме того, сверху и снизу пластинах выполнены открытые с одной стороны прорези, предназначенные для изменения направления движения протекающих через пакет по извилистой траектории реагентов. В находящихся между ними пластинах расположены имеющие X-образную форму или форму листа клевера смесительные и реакционные камеры, которые соединены между собой в направлении продольной оси пакета. В пакете пластин имеется извилистый канал для прохода теплоносителя. Пластины, которые имеют тол 3 щину от 0,25 до 25 мм, изготавливают из материала с хорошей теплопроводностью, предпочтительно из металла или сплава, микрообработкой, травлением, штамповкой, литографическим или иным способом. Прочно соединенные друг с другом, например зажимами, болтами, заклепками, пайкой, клеем или иным образом, пластины образуют один многослойный пакет. Имеющие сложную форму каналы для прохода текучих реагентов или продуктов реакции обладают большим гидравлическим сопротивлением и не заполняются катализатором. Необходимость тонкой шлифовки внешних поверхностей прилегающих друг к другу пластин существенно увеличивает трудоемкость и заметно усложняет весь процесс изготовления реактора. В DE 19754185 С 1 описан реактор для каталитической конверсии химически активного текучего реагента с удерживаемым в реакторе решетчатой пластиной неподвижным слоем катализатора, разделенным вертикальными тепловыми листами, состоящими из двух приваренных друг к другу многократно деформированных в виде подушки металлических листов и образующими внутри катализатора пространство для прохода теплоносителя, который охлаждает или нагревает катализатор в отдельных точках, распределенных по объему катализатора в форме решетки. Химически активные реагенты и продукты реакции и теплоноситель в противотоке проходят, с одной стороны, между тепловыми листами через отдельные вытянутые в вертикальном направлении участки, на которые разделен неподвижный слой катализатора, а с другой стороны, через каналы, образованные внутри тепловых листов приваренными друг к другу многократно деформированными металлическими листами. Корпус реактора имеет форму вертикального цилиндра, и поэтому все тепловые листы соответствуют такой конструкции, т.е. отличаются друг от друга их размерами. Установки с реакторами такого типа имеют сравнительно низкую производительность, которую в простейшем случае можно повысить за счет увеличения длины реактора и/или использования нескольких параллельно соединенных реакторов. В DE 19816296 А 1 описан предназначенный для получения водного раствора перекиси водорода из воды, водорода и кислорода реактор, в котором можно одновременно использовать и пакет с неподвижным слоем частиц катализатора, и плоские монолитные носители с каналами с покрытыми слоем катализатора стенками, выполняющими функции теплообменников. В качестве катализатора в таком реакторе предлагается использовать элементы 8-й и/или 1-й подгруппы Периодической таблицы,такие как Ru, Rh, Pd, Ir, Pt и Аu, предпочтительно Pd и Pt. В качестве материала носителя предлагается использовать активированный углерод,нерастворимые в воде оксиды, смеси оксидов, 004758 4 сульфатов, фосфатов и силикатов щелочноземельных металлов, Al, Si, Sn и металлов 3-6-й подгрупп Периодической таблицы. В указанной публикации говорится, что для изготовления носителя предпочтительно использовать оксиды кремния, алюминия, олова, титана, циркония,ниобия и тантала, а также сульфат бария. Металлические или керамические стенки каналов,которые выполняют функции теплообменников,аналогичных теплообменникам пластинчатого типа, рекомендуется изготавливать из тех же материалов, что и монолитные носители катализатора. В этой заявке описан экспериментальный реактор, выполненный в виде цилиндра с внутренним диаметром 18 мм и длиной 400 мм. Во время работы температуру в реакторе поддерживали в пределах от 0 до 90 С, предпочтительно в пределах от 20 до 70 С, а давление - в пределах от атмосферного до приблизительно 10 МПа, предпочтительно в пределах приблизительно от 0,5 до 5 МПа. В указанной заявке отмечено, что производительность реактора в простейшем случае можно повысить за счет увеличения длины реактора и/или использования нескольких параллельно соединенных реакторов. Реакторы, описанные в DE 19544985 С 1 иDE 19753720 А 1, содержат пластинчатые теплообменники с образованными между двумя пластинами щелями для прохода теплоносителя. В этих публикациях, однако, ничего не сказано о том, что такие щели могут выполнять функции реакционных пространств, имеющих форму широких щелей. В DE 19741645 А 1 описан микрореактор с реакционными и охлаждающими каналами, в котором глубина "а" реакционных каналов не превышает 1000 мкм, а минимальная толщина"b" стенки между реакционными и охлаждающими каналами также не превышает 1000 мкм. В этой заявке не содержится никакой информации об использовании в реакторе других реакционных пространств, кроме упомянутых выше каналов. Микрореактор с большим количеством параллельных канавок, которые используются в качестве реакционных пространств, описан вDE 19748481. Изготовление реактора такого типа, рассчитанного на большую производительность, связано, как очевидно, с высокими затратами. В настоящее время известны микрореакторы, у которых размеры каналов достигают несколько сот микрометров (обычно не превышают 100 мкм). Каналы с такими размерами отличаются высокими параметрами переноса (теплопередачи и массообмена). Мелкие каналы выполняют роль гасителей пламени и препятствуют его распространению. При работе с токсичными реагентами небольшой объем, в котором вступают в реакцию (или находятся) реагенты, делает реактор практически безопасным. С другой стороны, имеющие малые размеры каналы практически невозможно заполнить ка 5 тализатором. Принципиальным недостатком реакторов такого типа является также их сложность в изготовлении и эксплуатации. Во избежание забивания небольших по размерам каналов приходится устанавливать на входе в реактор соответствующий фильтр, препятствующий попаданию в каналы реактора различных мелких частиц. Компенсировать низкую производительность такого реактора можно только за счет использования большого количества параллельно соединенных реакторов. Кроме того, такие реакторы могут работать при высоких давлениях только в том случае, когда используемая в них охлаждающая среда имеет такое же высокое давление. Краткое описание изобретения В основу настоящего изобретения была положена задача разработать способ и устройство для проведения экзотермических и эндотермических процессов со взаимодействием нескольких текучих реагентов в присутствии или в отсутствие катализаторов в зоне реакции модульной конструкции, обеспечивающей возможность создания реактора требуемой производительности. Указанная задача решается согласно изобретению с помощью предлагаемого в нем способа, который отличается прежде всего тем, что а) в реакторе имеются щелевидные реакционные пространства, образованные в каждом случае между боковыми поверхностями двух по существу равных по ширине и по существу имеющих форму прямых параллелепипедов стеновых элементов, которые изготовлены в виде пластин из твердого материала и расположены с возможностью замены в блоке внутри фактически прямого параллелепипеда,б) реагенты попадают в щелевидные реакционные пространства через зоны, расположенные на краях реакционных пространств на одной и той же стороне блока, и проходят через реакционные пространства в виде реакционной смеси в одинаковых направлениях параллельными потоками и в) текучий теплоноситель проходит через полости, расположенные внутри стеновых элементов. Краткое описание чертежей На прилагаемых к описанию чертежах показано на фиг. 1 - изображение в аксонометрической проекции в разобранном виде группы, состоящей из двух стеновых элементов,на фиг. 2 - изображение в аксонометрической проекции нескольких расположенных рядом друг с другом стеновых элементов, показанных на фиг. 1,на фиг. 3 - вертикальный разрез нескольких показанных на фиг. 2 стеновых элементов,установленных на днище реактора высокого давления, 004758 6 на фиг. 4 - изображение в аксонометрической проекции в увеличенном масштабе участков двух стеновых элементов, расположенных в пределах показанной на фиг. 3 окружности А,на фиг. 5 - вертикальный боковой разрез стеновых элементов, установленных на днище реактора высокого давления, плоскостью, расположенной под углом 90 к плоскости разреза,показанного на фиг. 3,на фиг. 6 - изображение в аксонометрической проекции стеновых элементов, показанных на фиг. 2, вместе с пространством для распределения по реакционным пространствам подаваемого(ых) в реактор реагента(ов) и с пространством, в котором собирается продукт, полученный в результате реакции,на фиг. 7 - вертикальный разрез пластины и распределителя с каналами для прохода реагентов и/или теплоносителя,на фиг. 8 - вертикальный разрез реактора с корпусом высокого давления, выполненного по первому варианту,на фиг. 9 - вид снизу крышки корпуса реактора, показанного на фиг. 8, и на фиг. 10 - вертикальный разрез реактора с корпусом высокого давления, выполненного по второму варианту. Предпочтительные варианты осуществления изобретения Предлагаемое в настоящем изобретение решение позволяет полностью решить сформулированную выше задачу и, в частности, проводить экзотермические и эндотермические процессы со взаимодействием нескольких текучих реагентов (газов и/или жидкостей) в присутствии или в отсутствие катализаторов в зоне реакции модульной конструкции, обеспечивающей возможность создания реактора требуемой производительности. При уменьшении ширины реакционных пространств, например с 5 до 0,05 мм, увеличивается отношение поверхности реакционных пространств к их объему. Тем самым решается проблема, связанная с ограниченным переносом тепла в газах, и одновременно появляется возможность безопасного проведения высоко экзотермических или эндотермических реакций. К преимуществам изобретения можно также отнести следующие:- изготовление предлагаемого в изобретении устройства путем сочетания технологических приемов, используемых при изготовлении микрореакторов, с преимуществами простой,основанной на классических способах обработки технологии изготовления обычных реакторов,- возможность легкой замены отдельных стеновых элементов (встречающееся в описании выражение "по существу равной ширины и по существу имеющих форму прямых параллелепипедов" предусматривает возможность не 7 больших отклонений, обусловленных теми или иными конкретными причинами),- возможность использования стеновых элементов практически любой толщины при полном сохранении их функций,- возможность увеличения удельной площади поверхности за счет ее профилирования или придания ей определенной шероховатости,- возможность прямого полного или частичного покрытия боковых поверхностей разным по толщине каталитическим материалом путем пропитки, напыления, литографическим или другим соответствующим способом,- возможность заполнения реакционных пространств частицами катализатора разного размера,- возможность проведения реакций между газом и газом, между газом и жидкостью и между жидкостью и жидкостью,- возможность влияния на структуру потока и форму каналов, например, для слива и простого разделения жидких продуктов реакции,- возможность изменения ширины щелей,- перемешивание реагентов только в реакционных пространствах, эффективный контроль за протекающей реакцией,- отсутствие противотоков в реакционных пространствах,- высокие коэффициенты теплопередачи и большая площадь поверхностей теплообмена,позволяющая эффективно контролировать протекающие в реакторе процессы, в частности быстро изменять нагрузку на катализатор и/или его температурное поле с целью выравнивания температуры и устранения возникновения в катализаторе "мест перегрева", которые, как известно,существенно снижают срок службы катализатора,- возможность безопасной работы со взрывоопасными реакционными смесями,- небольшой объем мертвого пространства("объем, в котором задерживаются реагенты"),- возможность работы при высоком давлении и низких потерях давления в реакционных пространствах,- возможность погружения стеновых элементов в жидкие растворители и работы с отстойником с контролируемой снаружи температурой (за счет нагрева или охлаждения), наличие которого позволяет плавно закончить реакцию "гашением" и/или промывкой,- возможность добавления ингибиторов,препятствующих возникновению вторичных реакций, и восстановления объема газа/жидкости с помощью наполнителей и/или вытеснителей, которыми заполняется корпус высокого давления со стороны, противоположной сливу полученного продукта в отстойник,- снижение количества соединений и возможность более легкого уплотнения реактора и устранения утечек (что особенно важно при работе с токсичными компонентами), 004758- низкое сопротивление диффузии, высокая объемная производительность, в частности более высокая по сравнению с известными микрореакторами производительность, возможность масштабирования размеров лабораторного реактора путем их умножения (на соответствующий множитель) до размеров промышленного реактора,- простая и компактная конструкция реактора, возможность снижения затрат на изготовление и эксплуатацию реактора (обслуживание,потребление энергии),- возможность создания небольших установок. К другим особенностям способа, предлагаемым в соответствии с другими вариантами осуществления изобретения, которые по отдельности или в совокупности повышают его эффективность, относятся, в частности, следующие:- подача по меньшей мере одного реагента в данное реакционное пространство по меньшей мере через одну боковую поверхность стеновых элементов,- размещение по меньшей мере на одной стороне блока распределительной среды, из которой реагенты попадают в реакционные пространства,- использование твердой распределительной среды с группой каналов с очень небольшим поперечным сечением, исключающим возможность распространения пламени, возникающего при подаче в реакционные пространства реагентов, образующих взрывоопасную смесь,- использование распределительной среды,изготовленной из наполнителей с небольшими по размерам частицами и небольшими промежутками между частицами, которые исключают возможность распространения пламени, возникающего при подаче в реакционные пространства реагентов, образующих взрывоопасную смесь,- использование щелевидных реакционных пространств шириной предпочтительно от 0,05 до 5 мм, более предпочтительно от 0,05 до 0,2 мм,- использование щелей с небольшой шириной, которая исключает возможность распространения пламени, возникающего во взрывоопасных реакционных смесях,- заполнение реакционных пространств гранулированным катализатором,- нанесение, по меньшей мере, в местах расположения катализатора покрытия на образующие реакционные пространства боковые поверхности стеновых элементов,- придание образующим реакционные пространства боковым поверхностям стеновых элементов определенного профиля, увеличивающего площадь поверхности реакционных пространств, 9- погружение стеновых элементов, по меньшей мере частично, в водный или органический растворитель или в смесь растворителей,- использование водного растворителя, необязательно с добавлением, по меньшей мере,ингибиторов, которые препятствуют разложению и/или снижению качества продукта реакции, и/или- возможность получения предлагаемым в изобретении способом перекиси водорода из воды (водяного пара), водорода и воздуха, необязательно обогащенного кислородом, или кислорода. В настоящем изобретении предлагается также устройство для проведения реакций по меньшей мере между двумя текучими реагентами с использованием реактора, в котором расположены стеновые элементы, щелевидные реакционные пространства и полости для прохода текучего теплоносителя. Такое устройство согласно изобретению отличается тем, что а) щелевидные реакционные пространства расположены в каждом случае между боковыми поверхностями двух по существу равных по ширине и имеющих по существу форму прямых параллелепипедов стеновых элементов, выполненных в виде твердых пластин и расположенных с возможностью замены в блоке внутри фактически прямого параллелепипеда,б) реагенты подаются в щелевидные реакционные пространства с одной и той же стороны блока, а реакционная смесь проходит через реакционные пространства в одном и том же направлении параллельными потоками, и в) стеновые элементы имеют трубчатые внутренние полости для прохода текучего теплоносителя. Предлагаемые в изобретении способ и устройство можно использовать, в частности, при осуществлении- процесса селективной гидрогенизации и окисления,- процесса получения пропеналя каталитическим окислением пропена содержащим кислород (О 2) газом с более высокой по сравнению с воздухом концентрацией кислорода, сопровождаемым увеличением селективности,например, в присутствии содержащего молибден (Мо) катализатора при температуре от 350 до 500 С и давлении от 0,1 до 5 МПа,- процесса получения акриловой кислоты каталитическим окислением пропена, например,в присутствии содержащего молибден (Мо) катализатора и промотора при температуре от 250 до 350 С и давлении от 0,1 до 5 МПа,- процесса получения оксида этилена или оксида пропилена из этилена или пропилена соответственно и газообразной перекиси водорода в присутствии оксидного или кремнийсодержащего катализатора, такого как силикалит титана, при температуре от 60 до 200 С и давлении от 0,1 до 5 МПа, 004758- процесса прямого синтеза перекиси водорода из Н 2 и О 2 или содержащего кислород (О 2) газа в присутствии катализатора на основе благородного металла и воды или водяного пара,например способом, описанным в DE-A 19816296 и в других упомянутых выше публикациях. В качестве катализатора при этом можно использовать элементы 8-й и/или 1-й подгруппы Периодической таблицы, такие как Ru,Rh, Pd, Ir, Pt и Аu, предпочтительно Pd и Pt. Катализаторы можно использовать как таковые,например во взвешенном состоянии, а также в виде порошка, которым заполнены щелевидные реакционные пространства, или в виде покрытия, нанесенного на стеновые элементы непосредственно или с использованием образующих покрытия носителей. В качестве таких носителей можно использовать активированный уголь,нерастворимые в воде оксиды, смеси оксидов,сульфатов, фосфатов и силикатов щелочноземельных металлов, Al, Si, Sn и металлов 3-6-й подгрупп Периодической таблицы. В качестве носителя предпочтительно использовать оксиды кремния, алюминия, олова, титана, циркония,ниобия и тантала, а также сульфат бария. Прямой синтез перекиси водорода проводят при температуре реакции от 0 до 90, предпочтительно от 20 до 70, и давлении от атмосферного до приблизительно 10 МПа, предпочтительно от 0,5 до 5 МПа. К другим особенностям устройства, предлагаемого в соответствии с другими вариантами изобретения, которые повышают его эффективность и могут быть реализованы и по отдельности, и в совокупности, относятся, в частности,следующие:- наличие в стеновых элементах в каждом случае по меньшей мере одного подающего канала, который проходит по меньшей мере через одну боковую поверхность стеновых элементов и ведет в соответствующее реакционное пространство,- наличие расположенной по меньшей мере на одной стороне блока распределительной среды, из которой реагенты попадают в реакционные пространства,- использование твердой распределительной среды с группой каналов с очень небольшим поперечным сечением, исключающим возможность распространения пламени, возникающего при подаче в реакционные пространства реагентов, образующих взрывоопасную смесь,- использование распределительной среды,состоящей из наполнителей с небольшими по размерам частицами и небольшими промежутками между частицами, которые исключают возможность распространения пламени, возникающего при подаче в реакционные пространства реагентов, образующих взрывоопасную смесь, 11- использование щелевидных реакционных пространств шириной предпочтительно от 0,05 до 5 мм, наиболее предпочтительно от 0,05 до 0,2 мм,- заполнение реакционных пространств гранулированным катализатором,- нанесение по меньшей мере в местах расположения катализатора покрытия на образующие реакционные пространства боковые поверхности стеновых элементов,- придание образующим реакционные пространства боковым поверхностям стеновых элементов определенного профиля, увеличивающего площадь поверхности реакционных пространств,- размещение стеновых элементов частично или полностью в корпусе,- перекрытие реакционных пространств на узких сторонах стеновых элементов, расположенных параллельно направлению движения реагентов, пластинами с отверстиями для подвода теплоносителя внутрь стеновых элементов и его слива из стеновых элементов,- наличие в пластинах отверстий для подвода по меньшей мере одного реагента в стеновые элементы и наличие в стеновых элементах по меньшей мере одного подводящего канала,который через выходные отверстия сообщается в каждом случае с одним из реакционных пространств,- наличие в стеновых элементах группы расположенных параллельно их боковым поверхностям внутренних полостей, концы которых закрыты пластинами, которые установлены на узких сторонах стеновых элементов и имеют отверстия для прохода текучего теплоносителя,оси которых совпадают с осями внутренних полостей стеновых элементов,- наличие на внешней стороне пластин расположенных на входе в выполненные в них отверстия под прямыми углами к стеновым элементам каналов для прохода по меньшей мере одного реагента и/или теплоносителя,- наличие закрывающего внешнюю сторону пластин распределителя с каналами, которые сообщаются с отверстиями пластины,- изготовление стеновых элементов из двух элементов с полукруглыми или имеющими другую форму канавками, которые при прижатии соответствующих элементов друг к другу образуют в сборных стеновых элементах трубчатые полости,- объединение стеновых элементов в блок,расположенный в корпусе высокого давления,- заполнение корпуса высокого давления,по меньшей мере частично, растворителем,- наличие закрывающей корпус высокого давления крышки с двумя патрубками для подачи внутрь корпуса двух реагентов и перегородкой, которая прижимается к распределительной среде, 004758- возможность изменения ширины щелей изменением толщины прокладок. Ниже со ссылкой на фиг. 1-10 на конкретных примерах более подробно рассмотрено несколько вариантов осуществления настоящего изобретения. На фиг. 1 показаны в разобранном виде два стеновых элемента 1 с боковыми поверхностями 2 и расположенное между ними реакционное пространство 3, через которое в направлении стрелки 4 проходит поток реагентов. Каждый стеновой элемент имеет внутренние полости 5,выполненные в виде сквозных отверстий, которые проходят параллельно боковым поверхностям 2 стенового элемента 1 и заканчиваются на его узких сторонах 6. Другие варианты изобретения, связанные с конструкцией стеновых элементов, рассмотрены ниже. Стеновые элементы 1 имеют форму прямых параллелепипедов, большие стороны которых образуют боковые поверхности 2 стеновых элементов. Для увеличения эффективной площади поверхности боковые поверхности 2 можно, как показано на чертеже, выполнить негладкими или шероховатыми. На боковые поверхности 2 можно также (полностью или частично) нанести покрытие из материала, обладающего каталитическими свойствами (стеновые элементы с покрытыми катализатором боковыми поверхностями отдельно на чертежах не показаны). Другие особенности конструкции стеновых элементов показаны на фиг. 4. В альтернативе или в дополнение к рассмотренному выше варианту катализатор можно использовать и в виде заполняющих реакционное пространство 3 частиц соответствующего материала, размеры которых должны соответствовать ширине "s" щели (фиг. 4). На фиг. 2 показаны тринадцать равных по ширине стеновых элементов 1, образующих имеющий форму прямого параллелепипеда блок 24, при этом необходимо отметить, что количество стеновых элементов в блоке может быть разным и зависит от назначения и производительности реактора и характера протекающих в нем реакций. Однонаправленные параллельные потоки реагентов, проходящих в данном случае сверху вниз через щелевидные реакционные пространства реактора, условно показаны стрелками. На фиг. 3 показан вертикальный разрез блока стеновых элементов по фиг. 2, установленных на днище 7 реактора высокого давления и соединенных с ним фланцевым соединением 8. Жидкие растворители подаются в реактор по трубопроводу 9, остаточные газы выводятся из реактора по трубопроводу 10, конечный продукт выводится из реактора по трубопроводу 11,а собирающиеся в отстойнике 12 материалы выводятся из него по трубопроводу 12, обычно для дальнейшей очистки. 13 На фиг. 4 в увеличенном масштабе и в аксонометрической проекции показаны расположенные в изображенной на фиг. 3 окружности А участки стеновых элементов, расположенных по разные стороны от образованного ими реакционного пространства 3. Ширина "s" щели реакционного пространства 3 определяется толщиной прокладки 13 и обычно составляет от 0,05 до 5 мм. В этой связи необходимо отметить, что фактическая толщина щели реакционных пространств может выходить за эти пределы как в большую, так и в меньшую сторону. При проведении высокоэкзотермических или эндотермических реакций и прежде всего при работе со взрывоопасными газовыми смесями ширину щели обычно уменьшают до полного устранения возможности всякого возникновения в щели пламени. Оптимальная ширина щели зависит от свойств реагентов и типа реакции и каждый раз определяется экспериментально. Как показано на фиг. 4 и 6, ширина "s" щели в предлагаемом в изобретении устройстве намного меньше толщины стеновых элементов. В стеновых элементах имеются упомянутые выше внутренние полости или сквозные отверстия 5, предназначенные для прохода теплоносителя. В зависимости от назначения реактора и протекающих в нем реакций его работа может сопровождаться как выделением тепла (экзотермический процесс),так и поглощением тепла (эндотермический процесс). В качестве теплоносителя для отвода или подвода тепла можно использовать воду,масла, газы, а при определенных условиях и сам получаемый в реакторе продукт. В стеновых элементах 1 выполнены полукруглые канавки 14, которые дополняют друг друга и вместе образуют по существу цилиндрический канал 15, по которому в реакционное пространство подается первый реагент. В стеновых элементах выполнены также каналы 16,предназначенные для подачи в реакционное пространство по меньшей мере еще одного реагента. Каналы 16 соединены оканчивающимися на боковых поверхностях 2 стеновых элементов отверстиями 17 с соответствующим реакционным пространством 3, в котором подаваемые в него реагенты смешиваются друг с другом.Внутренние полости или сквозные отверстия 5,подающие каналы 15 и 16 и объединенные в группы отверстия 17 параллельны друг другу и проходят параллельно боковым поверхностям 2 стеновых элементов 1 по всей их длине (в горизонтальном направлении). Охлаждающие каналы (внутренние трубчатые полости или сквозные отверстия 5) можно выполнить аналогично показанным на фиг. 4 каналам 15, предназначенным для подачи в реакционное пространство одного из реагентов,для чего каждый стеновой элемент 1 необходимо разрезать по плоскости, параллельной его боковым поверхностям 2, на два подэлемента с выполненными на их образующих щель сторо 004758 14 нах полукруглыми или имеющими другую форму канавками. При прижатии двух соответствующих подэлементов друг к другу такие канавки образуют внутренние полости, или сквозные отверстия 5, для прохода текучего теплоносителя. Под "трубчатой" полостью в описании понимаются каналы или трубы с круглым или квадратным поперечным сечением. Ширину "s" щели выбирают таким образом, чтобы могущее возникнуть при использовании взрывоопасных реакционных смесей пламя не распространялось в реакционных пространствах 3. В некоторых случаях при работе со взрывоопасными смесями можно допустить возникновение локальных взрывов, которые,однако, не должны распространяться на соседние реакционные пространства. Существенным моментом в этой связи является то, что в предлагаемом в изобретении устройстве подающие каналы 15 и 16 расположены на краю (верхнем) стеновых элементов 1 или реакционных пространств 3, и поэтому взаимодействие реагентов происходит фактически на всей длине (в вертикальном направлении) реакционных пространств 3. Другие конструктивные особенности и варианты выполнения предлагаемой в изобретении системы подачи в реактор реагентов и теплоносителя и их вывода из него подробно рассмотрены ниже со ссылкой на соответствующие чертежи. На фиг. 5 показан поперечный разрез реактора плоскостью, повернутой вокруг вертикальной оси на 90 относительно плоскости разреза,изображенного на фиг. 3. Реактор соединен с трубами 18 и 19, по которым в него подают два исходных реагента, при этом при получении в реакторе перекиси водорода в него по трубе 18 подают воздух, а по трубе 19 - водород. На фиг. 5 показана также система прокачки соответствующего теплоносителя через внутренние каналы 5 стеновых элементов 1, узкие стороны 6 которых закрыты пластинами 20, в которых выполнены П-образные каналы 21, сообщающиеся в каждом случае с двумя внутренними каналами 5 стенового элемента. На фиг. 5 такие каналы показаны только на левой стороне блока. Теплоноситель подается в реактор по трубе 22, а сливается из него - по трубе 23. Предлагаемые в изобретении стеновые элементы изготавливают в виде пластин,имеющих по существу форму прямого параллелепипеда, из обладающего достаточной теплопроводностью материала, предпочтительно металла. В изготовленных предпочтительно из металла (например из нержавеющей стали) имеющих форму пластин стеновых элементах 1 выполнены соответствующие отверстия (каналы 5 для прохода теплоносителя и каналы 16 для подачи одного из реагентов) и канавки 14. Каналы 5 для прохода теплоносителя необязательно можно объединить в группы и выполнить в них проводящие тепло элементы, в частности 15 ребра, направляющие протекающий по каналам теплоноситель и увеличивающие площадь внутренней поверхности каналов. Стеновые элементы 1 можно также выполнить в виде двух имеющих форму пластин подэлементов, герметично соединенных, например винтами, друг с другом. Единственным принципиальным моментом, который следует учитывать при выборе конструкции стеновых элементов, является их способность выдерживать достаточно большую(составляющую в некоторых случаях от 10 МПа до 100 бар) разницу между давлением теплоносителя и давлением реагентов. На фиг. 6 схематично изображен показанный на фиг. 2 блок стеновых элементов, дополненный расположенным в его верхней части распределительным пространством 48 с центральной трубой 49 для подачи реагента(-ов) и расположенным в нижней часта сборником 50 с трубой 51 для слива полученного в результате реакции продукта. Распределительное пространство 48 предназначено для подачи в реакционные пространства реактора либо одного,либо смеси реагентов R1 и R2. При подаче в реакционные пространства смеси реагентов и при отсутствии части прокладок 13 можно отказаться от выполнения в стеновых элементах показанных на фиг. 4 каналов 15 и 16. Для работы со взрывоопасными реакционными смесями можно использовать не только реактор, показанный на фиг. 2, но и реакторы, показанные на фиг. 8-10. Открытые узкие стороны 6 стеновых элементов 1 можно закрыть показанным на фиг. 7 в увеличенном масштабе набором пластин, состоящим из пластины 41 и пластинчатого распределителя 47, которые без промежутков перекрывают по высоте и ширине все стеновые элементы 1. На фиг. 7 показано поперечное сечение верхней части набора пластин 41/47 с каналом 45 для прохода одного из реагентов и каналами 46 для прохода теплоносителя. Выполненные в пластинчатом распределителе 47 каналы 45 и 46 соединяются с выполненными в пластине 41 отверстиями 42, через которые реагенты попадают внутрь стеновых элементов, и отверстиями 43, через которые теплоноситель попадает в каналы стеновых элементов и выходит из них. Каналы 45 и 46, которые проходят перпендикулярно плоскости чертежа, образованы, например, выполненными в распределителе 47 канавками. Распределитель с такими канавками можно изготовить резанием, литьем или горячей(объемной) штамповкой. Выполненный таким образом распределитель обладает высокой прочностью и легко выдерживает возникающие при работе реактора перепады давления. Состоящий из двух пластин 41/47 набор, отверстия 42 и 43 которого совмещаются с соответствующими каналами стеновых элементов 1, через прокладку 54 герметично крепится винтами к узким сторонам 6 всех стеновых элементов 1 16 блока 24. На фиг. 7 показаны только некоторые из большого количества таких винтов 52. Положение состоящего из двух пластин набора, закрепленного на блоке стеновых элементов 1,условно показано стрелками 53 на фиг. 6. Пунктирные линии 55 показывают возможность объединения нескольких каналов 46 в один общий канал или в распределительное пространство. Состоящий из двух пластин набор 41/47 можно также использовать и в показанном на фиг. 4 блоке стеновых элементов 1. На фиг. 8 схематично показан поперечный разрез всего реактора, предназначенного, в частности, для получения перекиси водорода. Основным элементом этого реактора является состоящий из показанных на фиг. 1 и 2 стеновых элементов 1, имеющий форму прямого параллелепипеда блок 24, который сверху подвешен в корпусе 25 высокого давления, заполненном до уровня 26 растворителем 27, например водой. Щелевидные реакционные пространства 3 в блоке стеновых элементов расположены параллельно плоскости чертежа. Сверху корпус 25 высокого давления закрыт крышкой 28, разделенной на две полости 30 и 31 перегородкой 29, которая герметично прижимается к распределительной среде 37,выполненной в данном случае в виде изготовленного из твердого материала (предпочтительно из металла) блока с двумя отдельными группами узких каналов 39 и 40. Выполненные в таком распределительном блоке каналы 39 соединяют верхние края реакционных пространств 3 с полостью 30, а каналы 40 - с полостью 31. Соответственно подаваемые в реакционные пространства реагенты не могут смешиваться друг с другом в каналах 39 и 40. Однако,если это даже и произойдет, возникшее пламя не распространится в этих каналах. Смешение реагентов происходит только в реакционных пространствах 3, которые также исключают возможность распространения пламени, возникающего в них при образовании взрывоопасной реакционной смеси. Склонность реакционной смеси к возгоранию зависит от свойств исходных реагентов и характера их взаимодействия друг с другом и должна специально определяться в каждом конкретном случае. Подача первого реагента R1 в камеру 30 и второго реагента R2 в камеру 31 осуществляется через соединительные патрубки 34 и 35 соответственно. Неиспользуемые отработавшие газы отводятся из реактора в направлении, показанном стрелкой 32, готовый продукт отводится в направлении, показанном стрелкой 33, а отстойник очищается через трубу 12. На фиг. 8 показан также другой соединительный патрубок 36 для подачи третьего реагента R3 и/или растворителя, например воды. Пластины 41 на обоих концах стеновых элементов показаны схематично. 17 На фиг. 9 показан вид снизу крышки 28 корпуса 25 высокого давления, изображенного на фиг. 8. Отверстия 28 а предназначены для крепления к крышке винтами соответствующих стеновых элементов. Показанный на фиг. 10 реактор отличается от реактора, показанного фиг. 8 тем, что над блоком 24 стеновых элементов 1 расположена распределительная среда 38, образованная наполнителем, состоящим из теплопроводных частиц, например песка, мелких твердых частиц, металлических обрезков и волокон или аналогичных материалов, которые находятся на ситчатой пластине, которая на чертеже не показана. Реагенты R1 и R2 до их попадания в реакционные пространства 3 неупорядоченно смешиваются между собой. При этом, однако, в распределительной среде между ее частицами образуются очень узкие промежутки, которые препятствуют распространению пламени и исключают возможность возникновения взрыва. Стеновые элементы 1 могут иметь различное пространственное расположение, в частности их можно располагать не только в виде показанного на чертежах блока, состоящего из отдельных вертикально расположенных элементов, собранных друг с другом в горизонтальном направлении, но и в виде пакета из горизонтальных элементов, уложенных друг на друга в вертикальном направлении. В зависимости от конструкции реактора и предъявляемых к нему требований параллельные потоки (реагентов и теплоносителя) могут проходить через блок стеновых элементов в разных по вертикали направлениях, т.е. не только сверху вниз, но и снизу вверх. Движение параллельных потоков(реагентов и теплоносителя) может быть и горизонтальным. Изменить направление движения реагентов и теплоносителя можно простым "поворотом" и изменением пространственного положения блока 24 стеновых элементов вместе с пластинами 41 и соединительными патрубками. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ проведения реакций по меньшей мере между двумя текучими реагентами (R1 иR2) с использованием реактора, в котором расположены стеновые элементы (1), щелевидные реакционные пространства (3) и полости (5) для прохода текучего теплоносителя, отличающийся тем, что а) реакционные пространства (3) имеют форму щелей и образованы в каждом случае между боковыми поверхностями двух по существу равных по ширине и по существу имеющих форму прямых параллелепипедов стеновых элементов (1), которые изготовлены в виде пластин из твердого материала и расположены с возможностью замены в блоке (24) внутри фактически прямого параллелепипеда, 004758 18 б) реагенты (R1 и R2) попадают в щелевидные реакционные пространства (3) через зоны, расположенные на краях реакционных пространств на одной и той же стороне блока(24), и проходят через реакционные пространства (3) в виде реакционной смеси в одинаковых направлениях параллельными потоками, и в) текучий теплоноситель проходит через трубчатые полости (5), расположенные внутри стеновых элементов (1), при этом ширина ("s") щели реакционных пространств (3) составляет от 0,05 до 5 мм. 2. Способ по п.1, отличающийся тем, что по меньшей мере один реагент проходит через стеновой элемент (1) и попадает в данное реакционное пространство (3) по меньшей мере через одну боковую поверхность (2) стеновых элементов (1). 3. Способ по п.1, отличающийся тем, что по меньшей мере на одной стороне блока (24) расположена распределительная среда (37, 38),из которой реагенты (R1, R2) попадают в реакционные пространства (3). 4. Способ по п.3, отличающийся тем, что в качестве распределительной среды (37) используют изготовленный из твердого материала распределитель с группой каналов (39, 40) с таким небольшим поперечным сечением, которое препятствует распространению пламени, могущего возникнуть при работе с реагентами (R1, R2),образующими взрывоопасную смесь. 5. Способ по п.3, отличающийся тем, что в качестве распределительной среды (38) используют наполнитель из материала с такими небольшими по размерам частицами и небольшими промежутками между частицами, которые препятствуют распространению пламени, могущего возникнуть при работе с реагентами (R1,R2), образующими взрывоопасную смесь. 6. Способ по п.3, отличающийся тем, что при работе со взрывоопасными реакционными смесями используют узкие щели с такой шириной, которая препятствует распространению могущего возникнуть в щели пламени. 7. Способ по п.1, отличающийся тем, что реакционные пространства (3) заполняют гранулированным катализатором. 8. Способ по п.1, отличающийся тем, что на образующие реакционные пространства (3) боковые поверхности (2) стеновых элементов(1), по меньшей мере, в местах расположения катализатора наносят покрытие. 9. Способ по п.1, отличающийся тем, что для увеличения площади поверхности реакционных пространств (1) образующим их боковым поверхностям (2) стеновых элементов (23) придают определенный профиль. 10. Способ по п.1, отличающийся тем, что стеновые элементы (1), по меньшей мере, частично погружают в растворитель (27). 11. Способ по п.1, отличающийся тем, что в качестве растворителя (27) используют воду. 19 12. Способ по п.10, отличающийся тем, что к растворителю (27) добавляют по меньшей мере один стабилизатор, препятствующий разложению и/или снижению качества полученного продукта реакции. 13. Способ по любому из пп.1-12, отличающийся тем, что его используют для прямого синтеза перекиси водорода из водорода и кислорода или содержащего кислород (О 2) газа в присутствии катализатора, содержащего по меньшей мере один элемент 8-й и/или 1-й подгруппы Периодической таблицы, и воды или водяного пара. 14. Способ по любому из пп.1-12, отличающийся тем, что его используют для получения пропеналя из пропена и содержащего кислород (О 2) газа в присутствии катализатора. 15. Способ по любому из пп.1-12, отличающийся тем, что его используют для получения акриловой кислоты из пропена и содержащего кислород (О 2) газа в присутствии катализатора и промотора. 16. Способ по любому из пп.1-12, отличающийся тем, что его используют для получения оксида этилена или оксида пропилена из этилена или пропилена соответственно и газообразной перекиси водорода в присутствии оксидного или кремнийсодержащего катализатора. 17. Устройство для проведения реакций между по меньшей мере двумя текучими реагентами (R1 и R2) с использованием реактора, в котором расположены стеновые элементы (1),щелевидные реакционные пространства (3) и полости (5) для прохода текучего теплоносителя, отличающееся тем, что а) реакционные пространства (3) имеют форму щелей и образованы в каждом случае между боковыми поверхностями (2) двух по существу равных по ширине и по существу имеющих форму прямых параллелепипедов стеновых элементов (1), которые изготовлены в виде пластин из твердого материала и расположены с возможностью замены в блоке (24) внутри фактически прямого параллелепипеда,б) реагенты (R1 и R2) попадают в щелевидные реакционные пространства (3) через зоны, расположенные на краях реакционных пространств на одной и той же стороне блока(24), и проходят через реакционные пространства (3) в виде реакционной смеси в одинаковых направлениях параллельными потоками, и в) в стеновых элементах (1) выполнены трубчатые полости (5), предназначенные для прохода через стеновые элементы (1) текучего теплоносителя, при этом ширина ("s") щели реакционных пространств (3) составляет от 0,05 до 5 мм. 18. Устройство по п.17, отличающееся наличием в стеновых элементах (1) в каждом случае по меньшей мере одного канала (16) для подачи по меньшей мере одного реагента, который проходит по меньшей мере через одну бо 004758 20 ковую поверхность (2) стеновых элементов (3) и ведет в соответствующее реакционное пространство (3). 19. Устройство по п.17, отличающееся наличием расположенной по меньшей мере на одной стороне блока (24) распределительной среды (37, 38), из которой реагенты (R1, R2) попадают в реакционные пространства (3). 20. Устройство по п.19, отличающееся тем,что распределительная среда (37) представляет собой изготовленный из твердого материала распределитель с группой каналов (39, 40) с таким небольшим поперечным сечением, которое препятствует распространению пламени,возникающего при работе с реагентами (R1,R2), образующими взрывоопасную смесь. 21. Устройство по п.19, отличающееся тем,что распределительная среда (38) представляет собой наполнитель из материала с такими небольшими по размерам частицами и небольшими промежутками между частицами, которые препятствуют распространению пламени, возникающего при работе с реагентами (R1, R2),образующими взрывоопасную смесь. 22. Устройство по п.17, отличающееся тем,что при работе со взрывоопасными реакционными смесями используются узкие щели с такой шириной, которая препятствует распространению возникающего в щели пламени. 23. Устройство по п.17, отличающееся тем,что реакционные пространства (3) заполнены гранулированным катализатором. 24. Устройство по п.17, отличающееся тем,что на образующие реакционные пространства(3) боковые поверхности (2) стеновых элементов (1), по меньшей мере, в местах расположения катализатора нанесено покрытие. 25. Устройство по п.17, отличающееся тем,что образующие реакционные пространства (3) боковые поверхности (2) стеновых элементов(1) имеют определенный профиль, увеличивающий площадь поверхности реакционных пространств (3). 26. Устройство по п.17, отличающееся тем,что реакционные пространства (3) на узких сторонах (6) стеновых элементов (1), расположенных параллельно направлению движения реагентов (R1, R2), закрыты пластинами (41) с отверстиями (43), через которые теплоноситель подается внутрь стеновых элементов (1) и выходит из них. 27. Устройство по п.26, отличающееся наличием в пластинах (41) отверстий (42) для подвода по меньшей мере одного реагента (R1, R2) в стеновые элементы (1) и наличием в стеновых элементах (1) по меньшей мере одного подводящего канала (16), который через выходные отверстия (17) сообщается в каждом случае с одним из реакционных пространств (3). 28. Устройство по п.26, отличающееся наличием в стеновых элементах (1) группы расположенных параллельно их боковым поверхно 21 стям (2) внутренних полостей (5), концы которых закрыты пластинами (41), которые установлены на узких сторонах (6) стеновых элементов(1) и имеют отверстия (43) для прохода текучего теплоносителя, оси которых совпадают с осями внутренних полостей (5) стеновых элементов. 29. Устройство по пп.26 или 27, отличающееся наличием на внешних сторонах (44) пластин (41), расположенных на входе в выполненные в них отверстия (42, 43) под прямыми углами к стеновым элементам (1) каналов (45, 46) для прохода по меньшей мере одного реагента(R1, R2) и/или теплоносителя. 30. Устройство по п.29, отличающееся наличием расположенного на внешних сторонах(24), расположенный в корпусе (25) высокого давления. 32. Устройство по п.19 или 31, отличающееся тем, что корпус (25) высокого давления закрыт крышкой (28) с двумя патрубками (34,35) для подачи внутрь корпуса двух реагентов(R1, R2) и перегородкой (29), которая прижимается к распределительной среде (37, 38). 33. Устройство по п.17, отличающееся тем,что предусмотрена возможность изменять ширину ("s") щелей реакционных пространств (3) изменением толщины прокладок (13).
МПК / Метки
МПК: C07D 301/12, C07C 45/35, B01J 19/24, C01B 15/029
Метки: щелевидными, пространствами, проведения, способ, реакционными, устройство, реакторе, реакций
Код ссылки
<a href="https://eas.patents.su/13-4758-sposob-i-ustrojjstvo-dlya-provedeniya-reakcijj-v-reaktore-s-shhelevidnymi-reakcionnymi-prostranstvami.html" rel="bookmark" title="База патентов Евразийского Союза">Способ и устройство для проведения реакций в реакторе с щелевидными реакционными пространствами</a>
Предыдущий патент: Способ контроля потока текучей среды в подземной формации
Следующий патент: Способ изготовления фотокаталитических покрытий на подложках
Случайный патент: Способ получения синтез-газа