Комбинированная система из облицовки и матрицы
Номер патента: 4357
Опубликовано: 29.04.2004
Авторы: Лунн Аре, Квернхейм Арне Лунн, Хилаас Ларс, Эриксен Одд Ивар, Свеен Йостейн, Тайеби Давоуд, Саастад Оле Видар, Рамстад Марит Валеур, Лиле Оле Бернт
Формула / Реферат
1. Предварительно изготавливаемая комбинированная система (4) из облицовки и матрицы для непрерывного контроля условий или процессов в скважине и/или в пласте и управления ими, содержащая наружное перфорированное трубное средство (6), имеющее достаточную прочность для функционирования в качестве облицовки, внутренний экран (7) и матрицу (8), расположенную между наружным перфорированным трубным средством (6) и внутренним экраном (7), отличающаяся тем, что внутренний экран (7) и матрица (8) снабжены сквозными отверстиями (10), при этом открытые области, обеспечиваемые отверстиями (10), больше, чем открытые области, обеспечиваемые перфорациями в наружном перфорированном трубном средстве (6).
2. Система по п.1, отличающаяся тем, что наружное перфорированное трубное средство (6) образовано в виде сетки из гибкого материала или в виде одиночной перфорированной трубы, либо в виде любого их сочетания.
3. Система по п.1, отличающаяся тем, что внутренний экран (7) образован в виде сетки из гибкого материала или в виде одиночной перфорированной трубы.
4. Система по п.1, отличающаяся тем, что наружное перфорированное трубное средство (6), внутренний экран (7) и материал матрицы (8) содержат металл, неорганический или органический полимер или композитный материал, либо любые их сочетания.
5. Система по п.1, отличающаяся тем, что матрица (8) выполнена пористой и пористость, размер пор и распределение пор по размерам являются контролируемыми.
6. Система по п.5, отличающаяся тем, что пористость или проницаемость матрицы (8) автоматически подвергается воздействию окружающей среды, например температуры, потока воды или нефти, либо его инициируют вручную специальными реагентами.
7. Система по п.1, отличающаяся тем, что матрица (8) содержит по меньшей мере один тип полимера или полимерных частиц либо их сочетание.
8. Система по п.1, отличающаяся тем, что матрица (8) представляет собой объемную матрицу, имеющую ту же самую форму, что и геометрический объем полимера, заполняющего матрицу, блок по меньшей мере из одного типа полимерных частиц либо сочетание полимерных частиц в блочном полимере.
9. Система по п.7 или 8, отличающаяся тем, что частицы полимера имеют диаметр от 0,2 до 5000 m м.
10. Система по п.9, отличающаяся тем, что диаметр предпочтительно составляет от 0,5 до 3000 mм, а наиболее предпочтительно от 0,9 до 1000 mм.
11. Система по п.1, отличающаяся тем, что матрица (3) содержит пористую среду или пористое соединение.
12. Система по п.1, отличающаяся тем, что матрица является пористой матрицей (8) или изначально компактной матрицей (8), при этом компактная матрица становится пористой и проницаемой в результате внешнего влияния, причем матрица содержит полимер или химическое соединение, вступающее в реакцию при определенных условиях окружающей среды, например температуре, pH, наличии воды или воздействии инициаторов, с выделением при этом в поток текучей среды веществ, связанных с матрицей химически или посредством адсорбции.
13. Система по п.5 или 12, отличающаяся тем, что объем пор составляет порядка 50-70% свободного объема пор.
14. Система по п.1, отличающаяся тем, что матрица (8) содержит компоненты, обнаруживаемые после их выделения из матрицы.
15. Система по п.1, отличающаяся тем, что матрица (8) содержит химически информирующий индикатор или индикаторы для непрерывного ведения контроля определенных условий в скважине или в пласте.
16. Система по п.15, отличающаяся тем, что индикаторы адсорбированы матрицей (8) или химически связаны с ней.
17. Система по п.1, отличающаяся тем, что содержит гибкий перфорированный материал (9) из металла или неорганического, либо органического полимера или их сочетания, размещенный между наружным перфорированным трубным средством (6) и внутренним экраном (7) и повышающий прочность и устойчивость системы.
18. Система по п.1, отличающаяся тем, что она предварительно изготовлена приемлемой длины из соединенных друг с другом или с другим трубопроводом элементов, формирующих трубопровод, легко устанавливаемый в горизонтальные, вертикальные или криволинейные скважины.
19. Система по п.1, отличающаяся тем, что содержит секционную закупоривающую систему (5) для изоляции друг от друга различных секций системы.
20. Система по п.1, отличающаяся тем, что она разделена на разные секции вдоль скважины, при этом матрица (8) имеет разные свойства в разных секциях.
21. Способ управления процессами в скважине или пласте и непрерывного контроля этих процессов с использованием системы по п.1, состоящей из облицовки и матрицы, отличающийся тем, что создают матрицу с определенными свойствами на основе данных, касающихся пласта, перед установкой в пласт, устанавливают в пласт комбинированную систему из облицовки и матрицы, управляют скважиной или осуществляют непрерывный контроль за скважиной путем взаимодействия с матрицей или посредством матрицы.
22. Применение комбинированной системы из облицовки и матрицы согласно одному из пп.1-20 в любом технологическом оборудовании, подобном, например, реакторам, сепараторам и накопительным емкостям.
23. Применение комбинированной системы из облицовки и матрицы согласно одному из пп.1-20 в скважине для добычи газа, или нефти, или воды или в нагнетательной скважине для завершения скважины, управления ею и ведения непрерывного контроля.
Текст
1 Настоящее изобретение относится к системе и к способу, предназначенным для завершения скважины, а также для управления процессами, происходящими в пласте, и для непрерывного контроля этих процессов. Также раскрыто использование системы и способа. Предпосылки создания изобретения Во многих скважинах пласт, несущий углеводороды, должен быть закреплен для предотвращения обрушения буровой скважины или возникновения трещин вокруг нее. Еще одна причина закрепления буровой скважины заключается в необходимости уменьшить поступление мелкозернистых частиц, подобных песку. Чтобы этого добиться, скважину часто облицовывают перфорированной стальной трубой, после чего пространство между скважиной и трубой может быть забутовано гравием или частицами расклинивающего материала, как описано в международной публикацииWO9954592. Кроме того, различные виды фильтров для песка (гравийные или матричные) могут быть размещены с внутренней стороны (патенты США 5893416, 5232048, 5551513) стальной трубы, действующей в качестве облицовки. Обычно желательно, чтобы в течение добычи углеводородов поступление воды было минимальным по сравнению с добычей нефти или газа. Как правило, это обеспечивают посредством использования технологий, которые позволяют подавлять затопление пласта водой путем чередования зон добычи или путем блокирования прорыва воды. При способах отделения применительно к скважинам в морском дне пытаются осуществить отделение воды, получаемой в буровой скважине, в сочетании с повторяемым нагнетанием получаемой воды. Например, центробежные сепараторы, приводимые в действие электроэнергией, размещают в скважине, чтобы обеспечить внутри сепаратора вихреобразование для отделения текучей среды. Другое решение заключается в установке в буровой скважине систем, состоящих из клапанов и обводных труб, для обхода зон, в которые поступает вода (международная публикацияWO9963234). Однако для такого оборудования требуется энергия, а движущиеся компоненты подвержены износу и поломкам. В патенте США 6015011 раскрыто выполнение отделения в скважине посредством регулирования разности давлений на фильтре ниже пакера. Другие предложенные способы уменьшения получения воды из скважины включают в себя использование гелей, восприимчивых к водеWO9936667), расположенных в гравийной забутовке или в разрывах пласта. В патенте США 6015011 описано выполнение отделения в скважине посредством регулирования разности дав 004357 2 лений на фильтре ниже пакера. Чтобы довести до оптимальной полную добычу нефти и газа из скважины, некоторые зоны добычи в буровой скважине в заданное время могут быть обойдены или изолированы. Этого можно достичь посредством комплектования зон цементной облицовкой, через которую позже будет произведено механическое проникновение посредством определенного вмешательства. Еще одно решение состоит в установке в буровую скважину системы, состоящей из клапанов или обводных труб, чтобы обойти определенные зоны добычи (международная публикацияWO9963234). Однако для такого оборудования требуется энергия, а подвижные компоненты подвержены износу и поломкам. Также желательно, чтобы была обеспечена возможность ведения непрерывного контроля добычи и различных факторов, например, местных изменений рН, солености, концентрации углеводородов, температуры, давления, микроорганизмов, а также разности между добычей из пласта и/или нагнетаемой водой. Известный способ ведения непрерывного контроля свойств локального потока в скважине заключается в опускании в скважину каротажного инструмента, что описано в патентах США 4861986,5723781 и 58811807. Для этого инструмента требуется энергия, а подвижные компоненты подвержены износу и поломкам. Еще один способ непрерывного контроля потока заключается во введении химических индикаторов (патенты США 4420565, 4264329) или в размещении закладок из твердых частиц вдоль буровой скважины (патенты США 3991827,4008763). В патенте США 5892147 описано введение радиоактивных изотопов. В патенте Норвегии 309884, принадлежащем автору предлагаемого изобретения, описаны способы химической фиксации или объединения индикаторов в пласте, конструкциях или фильтрах вокруг скважины. Индикаторы или носители индикаторов химически выделяются, обеспечивая информацию, как функция определенных факторов, таких как расходы нефти или воды. Цель настоящего изобретения заключается в получении нового решения для выполнения недорогого, быстрого и простого завершения скважины или пласта, предполагающего долговременный непрерывный контроль и повышенную добычу из углеводородных скважин без необходимости использования энергии или подвижных компонентов. Сущность изобретения Согласно первому аспекту изобретения создана комбинированная предварительно изготавливаемая система из облицовки и матрицы,содержащая наружную перфорированную трубу или систему труб, имеющую достаточную прочность для функционирования в качестве облицовки и/или экрана для песка, внутренний 3 экран и матрицу, расположенную между наружной трубой и внутренним экраном, при этом комбинированная система из облицовки и матрицы образует предварительно изготавливаемую облицовку с заданными свойствами для быстрого и простого окончания подготовки скважины или пласта к эксплуатации, а также для ведения непрерывного контроля и управления. Матрица может быть пористой, причем с возможностью контроля пористости, размера пор и распределения пор по размерам, при этом на пористость и, следовательно, на проницаемость может автоматически оказывать влияние окружающая среда, например, поток воды или нефти, либо такое влияние может быть инициировано вручную посредством специальных реагентов. Они могут быть добавлены посредством использования хорошо известных технологий или посредством нагнетательных скважин. Матрица имеет объемную форму (однородную) с той же самой конфигурацией, что и геометрический объем, заполненный мономерным или полимерным раствором до полимеризации, может представлять собой узел по меньшей мере из одного типа полимерных частиц, либо сочетание полимерных частиц в блочном полимере(матрице). Матрица также может содержать инертные, либо порообразующие среды или соединения. Также можно начинать работу с первоначально компактной матрицей, которая в результате внешнего воздействия становится пористой и проницаемой. Как первоначально пористая, так и компактная матрица могут содержать полимер или химическое соединение,вступающее в реакцию при определенных условиях окружающей среды (например, температуре, рН, наличии воды или инициаторов реакции), посредством чего происходит выделение в поток текучей среды веществ, химически связанных с матрицей или связанных с ней посредством адсорбции. Матрица дополнительно может содержать компоненты, которые могут быть обнаружены после выделения из нее, например химически информирующий индикатор (индикаторы) для ведения постоянного контроля, при добыче и/или при определенных случаях, возникающих в скважине или в пласте. Индикаторы могут быть адсорбированы в матрице, либо могут быть химически соединены с ней. Предпочтительные варианты системы, состоящей из облицовочного и матричного элементов, раскрыты в зависимых пунктах 2-22 формулы изобретения. Согласно второму аспекту изобретения в нем создан способ управления процессами, происходящими в скважине или в пласте, и непрерывного контроля этих процессов, используя вышеупомянутую комбинированную систему,состоящую из облицовочного и матричного элементов, при этом способ содержит следую 004357 4 щие операции: создание комбинированной системы из облицовки и матрицы, содержащей матрицу с определенными свойствами, основанными на данных, касающихся пласта, перед установкой этой системы в пласт; установка в пласт комбинированной системы из облицовки и матрицы; управление скважиной или ведение непрерывного контроля за скважиной посредством взаимодействия с матрицей или с помощью матрицы. Согласно третьему аспекту изобретения вышеупомянутая комбинированная система из облицовки и матрицы может быть использована в качестве комбинированного трубопровода в каком-либо технологическом оборудовании,подобном, например, реакторам, сепараторам и накопительным емкостям. Составляющая изобретение система из облицовки и матрицы обеспечивает быстрый и простой способ окончания подготовки скважины к эксплуатации и управления процессами,предпочтительно используемыми при добыче нефти, газа или воды, а также в нагнетательных скважинах, и ведения непрерывного контроля за этими процессами. При завершении скважины части последовательности элементов могут представлять собой неперфорированные трубные элементы. Матрица дополнительно может содержать компоненты, сдерживающие какие-либо нежелательные явления или препятствующие их возникновению, например такие, как рост бактерий или формирование в матрице чешуек. Изобретение может быть использовано в любой буровой скважине, как находящейся на берегу, так и в открытом море. Оно также может быть использовано для подобных целей в любом технологическом оборудовании. Краткое описание фигур Указанные выше и другие отличительные признаки можно будет лучше понять при рассмотрении приведенного далее описания и прилагаемых фигур, на которых изображено следующее: фиг. 1 схематически представляет буровую скважину, проходящую через различные слои пласта; фиг. 2 схематически представляет произвольный участок буровой скважины в пласте перед введением системы из облицовки и матрицы, границу буровой скважины и разрывы в пласте; фиг. 3 схематически представляет произвольный участок буровой скважины в пласте после введения комбинированной системы из облицовки и матрицы согласно варианту осуществления изобретения; фиг. 4 схематически представляет произвольный участок буровой скважины в пласте после введения комбинированной системы из 5 облицовки и матрицы, при этом согласно варианту осуществления изобретения скважина разделена на участки; фиг. 5 схематически представляет возможную конструкцию в поперечном сечении комбинированной системы из облицовки и матрицы согласно варианту осуществления изобретения,при этом гибкий перфорированный материал между трубой и внутренним экраном формирует часть комбинированной системы из облицовки и матрицы; фиг. 6 схематически представляет поперечную стенку возможной конструкции комбинированной системы из облицовки и матрицы согласно варианту осуществления изобретения; фиг. 7 представляет другой схематический вид возможной конструкции поперечной стенки для комбинированной системы из облицовки и матрицы согласно варианту осуществления изобретения; фиг. 8 представляет схематический вид возможной конструкции поперечной стенки для выполнения функции контроля воды посредством набухания матрицы с использованием комбинированной системы из облицовки и матрицы согласно варианту осуществления изобретения; фиг. 9 представляет схематический вид возможной конструкции поперечной стенки для выполнения функции управления потоком текучей среды, используя комбинированную систему из облицовки и матрицы согласно варианту осуществления изобретения; фиг. 10 представляет схематический вид другого варианта комбинированной системы из облицовки и матрицы согласно варианту осуществления изобретения, при этом наружная перфорированная трубная система состоит из наружного экрана для песка, распорного элемента,перфорированной трубы, другого распорного элемента и другой перфорированной трубы. Описание изобретения В приведенном далее описании различные варианты осуществления изобретения представлены лишь в качестве примера и не должны быть использованы для ограничения изобретения. На фиг. 1 показана комбинированная,предварительно изготавливаемая система 4 из облицовочного и матричного элементов, которая предпочтительно должна быть использована в скважине 2 при добыче нефти, газа или воды,либо при нагнетании. На фигуре показана граница 3 буровой скважины. Предварительно изготавливаемую комбинированную систему 4 вводят в буровую скважину 2, причем эта система может быть изготовлена так, что будет иметь разную длину, прочность и будет обладать разными свойствами. Скважина может быть разделена на секции или зоны посредством использования закупоривающей системы 5. Места расположения элементов закупоривающей системы могут быть определены заранее, 004357 6 например, на основе данных, касающихся пласта. Они также могут быть определены на основе данных другого вида или исходя из опыта. В одном из вариантов (фиг. 3) комбинированная система 4 содержит несколько элементов, при этом каждый элемент состоит из наружной перфорированной трубы или трубной системы 6,обладающей достаточной прочностью, чтобы действовать в качестве облицовки и/или экрана для песка, и внутреннего трубчатого экрана 7,между которыми находится матрица 8. Матрица 8 основана на одном или нескольких типах полимера или полимерных частиц, которые могут иметь один или несколько заданных размеров,придавая матрице желаемые характеристики или свойства. Матрица 8 обладает любой желаемой прочностью и проницаемостью. Кроме того, полимерные частицы в матрице 8 могут служить носителями для каких-либо желаемых химикалиев или микроорганизмов в целях управления и/или непрерывного контроля. Проницаемость матрицы 8 задают, и она может изменяться от нуля до 70%. Она может быть фиксированной или может изменяться по времени в соответствии с расходами нефти или воды, с задаваемыми по времени разрушением или уплотнением, или посредством химического инициирования. Заданные отверстия или прорези 10 через матрицу 8 и внутренний экран 7 обеспечивают при полностью открытых областях почти свободное течение текучих сред из перфорированной трубы или трубной системы 6 (фиг. 6). Чтобы улучшить (усилить) свободный, не ограничиваемый поток текучих сред из перфорированной трубы или трубной системы 6, между трубой или трубной системой 6 и матрицей 8 может быть размещен внутренний экран 16. Площади отверстий или прорезей 10 определяют заранее, при этом они могут быть фиксированными или могут изменяться по времени в соответствии с расходами нефти или воды. Перед монтажом системы в скважине 2 отверстия или прорези 10 могут быть заполнены инертной средой, которая подвергается разрушению в заданное время при определенных условиях в пласте или посредством химического инициирования. Уменьшение открытой области отверстий или прорезей 10 может быть обеспечено посредством набухания матрицы 8. Система 4 из трубчатого и матричного элементов, показанная на фиг. 1, может быть предварительно изготовлена в виде любых приемлемых секций, подсоединяемых друг к другу или к любым другим трубопроводным элементам, чтобы сформировать трубопровод, легко устанавливаемый в горизонтальные, вертикальные или криволинейные скважины. Свойства матрицы 8, а также форма, размеры и количество отверстий или прорезей 10 через матрицу 8 могут быть определены заранее на основе данных, касающихся пласта, и могут изменяться на любом участке. Перед установкой в пласт каж 7 дый элемент системы 4 может быть испытан. Любой элемент может содержать оборудование для механического или химического уплотнения 5 буровой скважины. Комбинированная система 4 из облицовки и матрицы может быть выполнена из любых приемлемых материалов, обладающих достаточной прочностью и желаемыми свойствами. Внутренний диаметр элемента системы или свободное пространство внутри элемента должны быть достаточными для свободного течения любых текучих сред и для манипулирования любыми желаемыми инструментами, предназначенными для скважины, подобными измерительному оборудованию или клапанам. Наружная перфорированная труба или трубная система 6 может представлять собой конструкцию, обладающую достаточной прочностью, чтобы действовать в качестве облицовки и/или экрана для песка, сама по себе или в качестве составной части комбинированной системы 4 из облицовочного и матричного элементов, при этом она может быть выполнена из металла, полимера или композитного материала. Наружная труба или трубная система 6 может быть образована в виде одной перфорированной трубы или в виде сетки из гибкого материала, или может представлять собой их сочетание, а также может, например, представлять собой какие-либо имеющиеся в торговой сети облицовочные элементы или элементы для экранирования песка. Внутренний экран 7 может обладать достаточной механической прочностью, чтобы выдерживать воздействие потока или инструмента,предназначенного для скважины и находящегося внутри элементов (центральное отверстие 2 скважины), и может представлять собой составную часть системы 4 из облицовочного и матричного элементов. Внутренний экран 7 может быть выполнен из металла, полимера или композитного материала. Он может быть образован в виде одной перфорированной трубы или в виде сетки из гибкого материала. Наружная перфорированная труба или трубная система 6,внутренний экран 7 и матрица 8 показаны на фиг. 3. Подробное описание На фиг. 4 буровая скважина 2 и комбинированная система 4 из облицовочного и матричного элементов разделены на три отдельных секции или зоны посредством закупоривающей системы 5. Комбинированная система 4, используемая в различных секциях скважины,может обладать разными свойствами, иметь разную длину и прочность. Введение или сдавливание закупоривающей системы 5 может быть выполнено после введения в буровую скважину 2 комбинированной системы 4. В составляющей изобретение комбинированной системе 4 из облицовочного и матричного элементов пространство между наружной 8 перфорированной трубой или трубной системой 6 и внутренним экраном 7 заполнено матрицей 8, обладающей желаемыми свойствами. Матрица 8 может заполнять пространство сама по себе или представлять собой часть комбинированной системы 4, например так, как показано на фиг. 5, при этом гибкий перфорированный материал 9 между наружной перфорированной трубой или трубной системой 6 и внутренним экраном 7 формирует часть комбинированной системы 4 из облицовки/матрицы. Гибкий материал 9 может представлять собой металл или полимерный материал. Материал 9 может быть использован для увеличения физической прочности и устойчивости системы 4. Поскольку материал 9 перфорирован, он не будет оказывать какого-либо существенного влияния на поток текучей среды через матрицу 8, либо через отверстия или прорези 10, проходящие через матрицу 8. В одном из вариантов отверстия или прорези 10, проходящие через матрицу 8 и внутренний экран 7, обеспечивают свободный поток текучей среды 12 и/или мелкозернистых частиц 11 (например песка), проходящих через наружный трубчатый экран 6. Это показано на фиг. 6. Небольшая часть 14 текучей среды 12 дренирует через пористую матрицу 8 под действием градиента давления, создаваемого потоками 12 и 15 текучей среды, и разных размеров или геометрических форм отверстий или прорезей 10. Поток 14 текучей среды через матрицу 8 обеспечивает возможность выделения каких-либо индикаторов, введенных в матрицу 8, в поток 12 текучей среды, а после этого в поток 15, как раскрыто в патенте Норвегии 309884, или возможность выполнения функций управления,подобных набуханию матрицы 8, когда в заданное время ее подвергают воздействию воды. Внутренний экран 7 защищает матрицу 8 от эрозии, вызываемой потоком 15 текучей среды,и препятствует вымыванию потоком 15 индикатора из матрицы 8 на его пути выхода к поверхности. Это важный результат, поскольку выделение индикаторов из матрицы 8 указывает местный расход текучей среды из каждого участка, как описано в норвежском патенте 309884. На фиг. 7 представлен схематический вид возможной конструкции еще одной поперечной стенки для комбинированной системы 4 из облицовочного и матричного элементов, при этом отверстия или прорези 10, проходящие через матрицу 8 и внутренний экран 7, а также пористый материал или экран 16 из металла, полимера или композитного материала, расположенный между наружным экраном 6 и матрицей 8,обеспечивают возможность свободного течения потока 12 текучей среды и/или мелкозернистых частиц 11 (например песка), проходящих через наружный трубчатый экран 6. Небольшая часть 14 потока 12 текучей среды дренирует через пористую матрицу 8 под действием разности 9 давлений, создаваемой потоками 12 и 15, и разными размерами или геометрическими формами отверстий или прорезей 10, обеспечивая возможность выделения какого-либо индикатора в поток 12 текучей среды согласно механизмам,описанным в норвежском патенте 309884,или возможность выполнения функций управления, подобных набуханию матрицы 8, когда ее в заданное время подвергают воздействию воды. В этом случае также можно будет обеспечить защиту матрицы 8 внутренним экраном 7 от эрозии, обусловленной воздействием потока 15 текучей среды, и создание этим экраном препятствия для вымывания индикатора из матрицы 8 потоком 15 на пути его выхода к поверхности. Это важный результат, поскольку выделение индикатора из матрицы 8 указывает местный расход текучей среды из каждого участка,как описано в норвежском патенте 309884. Перфорированная труба или трубная система 6 в принципе может представлять собой какое-либо сочетание перфорированных труб,распорных деталей и сеток из гибкого материала, действующих в качестве комбинированной облицовки и/или экрана для песка. На фиг. 10 представлен вариант, в котором система 6 перфорированных труб образована наружным гибким материалом 19, действующим в качестве экрана для песка, перфорированной трубой 21 и перфорированной трубой 23. Между наружным гибким материалом 19 и перфорированной трубой 21, а также между перфорированной трубой 21 и перфорированной трубой 23 находятся распорные детали 20 и 22. Распорные детали 20 и 22 обеспечивают возможность свободного течения текучей среды и/или мелкозернистых частиц, проходящих через гибкий материал 19 вдоль перфорированных труб 21 и 23. Наружный гибкий материал 19, распорная деталь 20 и перфорированная труба 21 могут быть сформированы посредством какой-либо имеющейся в торговой сети комбинированной системы из облицовки и экрана для песка. Перфорационные отверстия, проходящие через трубу 21, могут иметь любую форму, могут быть выполнены в определенном количестве или могут иметь определенные размеры, в то время как перфорационные отверстия, проходящие через трубу 23,согласуются с отверстиями или разрезами, проходящими через матрицу 8 и внутренний экран 7, как показано для трубы или трубной системы 6 на фиг. 6 и 7. Перфорационные отверстия в трубе 23 и отверстия или прорези 10, проходящие через матрицу 8 и внутреннюю трубу 7,могут быть выполнены любым способом, чтобы предотвратить непосредственный поток текучей среды через перфорационные отверстия в обеих трубах 21 и 23. Наружный гибкий материал 19,перфорированные трубы 21 и 23, и распорные детали 20 и 22 могут быть выполнены из какого-либо материала, из полимера или композитного материала. 10 Матрица Важная концепция настоящего изобретения заключается в обеспечении точного контроля пористости и химического состава матрицы. Матрицу 8 изготавливают посредством заполнения определенного объема (насыпной объем) реагентами, которые могут вступать в реакцию,чтобы образовать пористый полимер той же самой формы, что и свободно получаемый объем. Для формирования пор в полимерной матрице используют порообразователь (часто инертный растворитель или полимеры). Тип и количество порообразователя будут влиять на размер пор и на степень пористости. Испарение или разрушение порообразователя приводит к получению матрицы с постоянными порами. Матрица 8 также может состоять из объемной матрицы, которая была упомянута выше, в сочетании с одним или несколькими типами предварительно изготовленных полимерных частиц. В этом случае полимерные частицы перемешивают с мономером (мономерами) или реагентами до выполнения полимеризации. В течение процесса полимеризации эти частицы будут равномерно распределены по всему объему матрицы. Физические и химические свойства(например, пористость, размер пор, способность распада, набухание) объемной матрицы будут теми же самыми, что и у полимерных частиц,созданных из того же количества и того же типа реагентов. Различные возможности управления матрицей описаны ниже применительно к полимерным частицам, однако то же самое применимо к блочному полимеру (к матрице). Точнее,размеры пор, пористость, а также химические и физические свойства объемной матрицы могут изменяться по отношению к полимерным частицам, когда используют сочетание этих типов. Могут быть созданы матрицы специального назначения (объемные и из полимерных частиц), чтобы обеспечить контролируемое выделение индикаторов и управление проницаемостью различными текучими средами. Матрица может содержать один или несколько типов пористых или непористых полимерных частиц с заданным диаметром от 0,2 до 5000 м, предпочтительно от 0,5 до 3000 м, а наиболее предпочтительно от 0,9 до 1000 м. Монодисперсные или узкоразмерные частицы могут быть созданы посредством способа двухступенчатого набухания (см. Европейский патент 0003905) или посредством процесса ступенчатого роста (см. Европейский патент 0594696 В 1). Способ двухступенчатого набухания пригоден для создания монодисперсных частиц размером от 1 до 1000 м, в то время как процесс ступенчатого роста пригоден для создания частиц размером от 100 до 1000 м. Могут быть созданы пористые частицы с максимальным объемом пор, составляющим порядка 90%, однако объем пор, составляющий более 11 70%, приводит к получению хрупких частиц,которые не способны противостоять большим давлениям в сухих условиях. Оптимальными будут частицы, свободный объем пор в которых составляет примерно от 50 до 70%. Высокая степень поперечных связей в частицах приводит к увеличению количества пор, причем в зависимости от типа порообразователя можно легко получить поры, радиус которых примерно составляет от 50 до 200 nм. Большие поры образуют посредством использования, например,органических кислот, спиртов, полимеров или других разрушающих органических или неорганических композиций. Полимерные частицы могут быть созданы посредством других способов полимеризации,например способов, подобных способам получения дисперсий, суспензий (нефть/вода), обратных суспензий (вода/нефть), эмульсий (миниэмульсий и микроэмульсий) или посредством конденсационных реакций, но этими способами их получение не ограничено. Однако большинство этих способов обеспечивает более широкое распределение полимерных частиц по размерам в верхнем размерном диапазоне. Посредством перемешивания монодисперсных или узкоразмерных частиц с разными заданными размерами могут быть получены специальные типы матриц с желаемой пористостью и проницаемостью. При использовании монодисперсных частиц могут быть получены весьма точные матричные закладные структуры. Могут быть обеспечены задаваемые изменения пористости и проницаемости матрицы при заданных параметрах, таких как время, температура, расход нефти, газа или воды. После процесса полимеризации поры в матрице 8 заполняют инертной средой или соединениями (порообразователем). При воздействии желаемой среды (воды или углеводородов) порообразователь в объемной матрице может быть заменен текучей средой скважины. Порообразователь или соединения внутри пористых частиц будут растворяться с уменьшенной скоростью, обеспечивая контролируемое изменение свободного пространства и проницаемости матрицы 8 в надлежащее время. Также могут быть изготовлены и введены в матрицу небольшие, разрушаемые компактные или пористые частицы, содержащие индикаторы. При размывании (подобно куску мыла) эти частицы не будут создавать "увеличенные" отверстия в матрице, в надлежащее время повышая пористость и проницаемость. Разрушаемые частицы или гели, имеющиеся в матрице, могут быть изготовлены посредством растворимых полимеров, соединенных друг с другом поперечными связями, которые в надлежащее время могут быть разрушены,либо подвергнуты воздействию, например, воды или нефти. Когда эти связи разрушены, частицы смогут свободно перемещаться совместно с те 004357 12 кучей средой, оставляя в матрице открытые поры. Матрицы с различными функциональными группами, подобными таким группам, как -NH2,-ОН, -СООН, -CONH2, -SH, -COOR (R представляет собой какую-либо группу), но не ограниченные этими группами, могут быть изготовлены посредством использования мономеров со специальными химическими группами дополнительно к мономерам, используемым для проведения реакции полимеризации (что описано,например, в Европейском патенте 0003905). Посредством использования заданных смесей из разных мономеров могут быть изготовлены матрицы с разными свойствами, содержащие заданное количество функциональных групп. Активные вещества, подобные микроорганизмам, или какие-либо индикаторы, предназначенные для непрерывного контроля добычи углеводородов и воды из различных зон или участков добычи в пласте, содержащем углеводороды, и для обнаружения различных факторов, например таких, как локальные изменения рН, соленость, композиция углеводородов, температура, давление, микроорганизмы и разница между добычей из пласта и/или нагнетанием воды (что описано в норвежском патенте 309884), могут быть связаны в матрице 8 посредством разрушаемых связей подобно эфирам, ангидриду, карбонату, основаниям Шиффа,но не ограниченных ими, и действуют при определенных событиях. Функциональные группы, подобные -СООН,-ОН, -CONH2, SO3H, но не ограниченные ими, а также ароматические и алифатические цепи могут быть дополнительно использованы, чтобы придать матрице 8 желаемые свойства увлажнения (гидрофобные или гидрофильные). Задаваемое уменьшение пористости и проницаемости матрицы может быть обеспечено посредством использования внутри матрицы 8 набухающих полимерных частиц или гелей. Свойства набухания могут быть обеспечены посредством использования полимера/мономеров, которые могут, например, быть подвергнуты гидролизу при наличии воды. При гидролизе или посредством других химических процессов создают гидрофильные группы (подобные таким как -COO-, -SO3- и -ОН, но не ограниченные ими), которые позволяют обеспечить увеличенную растворимость полимера и набухание частиц или гелей. Если используют систему с поперечными связями, то степень использования поперечных связей будет определять степень набухания матрицы 8. Низкая степень использования поперечных связей будет приводить к значительному набуханию. Принцип выделения активных веществ или индикаторов основан на наличии в матрице 8 пор, имеющих малые и средние размеры, что обеспечивает прочность и медленное выделение активных веществ, как только незначительная часть текучей среды 13 скважины будет проходить через матрицу 8 благодаря размеру пор. Когда с целью получения информации в качестве части матрицы в нее включают индикаторы (что описано в норвежском патенте 309884), например, индикаторы в качестве части мономерного звена (звеньев),будет обеспечено контролируемое выделение индикаторов без какого-либо уменьшения устойчивости матрицы. Матрица может содержать химикаты, которые препятствуют возникновению в матрице таких явлений, как рост бактерий или образование чешуек, либо сдерживают эти явления. В матрице может быть обеспечена фиксация ряда различных химикатов, которые выделяются контролируемым образом или становятся активными в ответ на возникновение в матрице определенного нежелательного явления. Назначение этих химикатов заключается в том, чтобы избежать блокирования пор и зарастания в матрице пор-стенок вследствие нежелательных явлений, например таких, как рост микроорганизмов или образование чешуек. Химикаты могут представлять собой любые приемлемые химикаты, предпочтительно действующие при низких концентрациях. Микроорганизмы, в основном создающие неприятности в пласте, содержащем углеводороды, представляют собой бактерии, восстанавливающие сульфат. Эти организмы широко распространены и представляют собой специальную группу микроорганизмов, которые могут восстанавливать сульфат (SO42-) с получением сероводорода (H2S). В морских месторождениях, где оказывает воздействие приливающая морская вода, условия для роста и активности бактерий, восстанавливающих сульфат, вполне удовлетворительны. Окружающая среда аэрофобна, при этом морская вода содержит значительное количество сульфата, а пласт с водой и нефтью содержит низкомолекулярные жирные кислоты и другие нутриенты. Таким образом,природные бактерии, восстанавливающие сульфат, могут колонизироваться в матрице и в течение их роста создавать H2S. Н 2S может вызывать кисловку матрицы и корродирование стального оборудования, при этом бактерии могут создавать биопленку (полисахариды), что приводит к нежелательному закупориванию пор матрицы. В настоящее время широко используют биоцидную обработку для контроля активности бактерий и коррозии в резервуарах с нефтью и в системах нефтяных месторождений. Используемые токсичные химические вещества представляют собой обычный биоцид (например, альдегиды, органические кислоты, изотиазолоны, парабены, четвертичные соли аммония и т.д.). Химические вещества для биоцидной обработки, находящиеся в матрице в фиксированном состоянии, могут быть выделены или становятся активными в ответ на определенные 14 инициирующие воздействия или на метаболиты бактерий, восстанавливающих сульфат. Например, химикаты могут быть выделены или приведены в активное состояние в ответ на появление сульфида, который всегда образуется в течение роста микроорганизмов, например таких,как бактерии, восстанавливающие сульфат, или в ответ на понижение рН, что является следствием образования сульфита. В этой ситуации химикалии могут быть выделены только локально в зонах, где происходит рост бактерий,восстанавливающих сульфит, в то время как химикалии, находящиеся в других зонах матрицы, остаются в латентном и/или неактивированном состоянии. Одна из возможностей состоит в использовании остаточных частиц магнитного железа (Fe), которые будут обеспечивать коагуляцию или захват, либо фиксацию химикалия в его матрице. В ответ на сульфит (S2-) железо будет осаждаться в виде FeS, при этом матрица будет разрушена и будет выделен биоцид. Также могут быть использованы полимеры с поперечными связями на основе цистамина. При наличии сульфита связь S-S между двумя молекулами цистамина будет нарушена и будет выделен активный агент. Что касается выделения активных соединений в ответ на понижение рН, то могут быть использованы различные соединения или связи,которые неустойчивы при низких значениях рН. Биоцидные альдегиды, которые связаны с матрицей в виде оснований Шиффа, будут выделены как следствие понижения рН. Эфирные связи также более эффективно подвергаются гидролизу в кислотной среде. Образование биопленок, блокирующих поры в матрице, может быть предотвращено посредством покрытия стенок пор лектином или антителами против полисахаридов. Образованные биопленки могут быть растворены, например, посредством использования ферментов предпочтительно из теплолюбивых морских микроорганизмов, которые разрушают полисахариды в биопленке. В матрице также могут быть использованы микроорганизмы, подвижность которых уменьшена и которые способны создавать антимикробные соединения и/или соединения, ограничивающие рост бактерий, такие как антибиотики и бактерицины. В этом отношении может быть использована генная инженерия, чтобы создать микроорганизмы, способные расти и создавать такие соединения при определенных условиях в пласте. Матрица 8 также может быть предварительно изготовлена на берегу или на какой-либо платформе или на судне, находящихся в море,путем введения взвеси, содержащей заданные полимеры и/или полимерные частицы, обладающие желаемыми свойствами, либо содержащие любые желаемые химикаты или микроорганизмы, инициаторы и внутреннюю среду 15 не ограниченную ею), между наружной перфорированной трубой или трубной системой 6 и внутренним экраном 7. После полимеризации матрица будет иметь заданную пористость и проницаемость. В тех случаях, когда используют инертную среду, поры в матрице 8, полученные посредством инертной среды, будут своевременно открыты, когда происходит вымывание или выделение инертной среды при определенных условиях в пласте. Температурная устойчивость матрицы 8 изменяется в зависимости от мономеров, используемых в процессе полимеризации, при этом она может изменяться от 50 до 300 С. На физическую прочность объемной матрицы или полимерных частиц (или их сочетания, составляющего матрицу 8) могут оказывать влияние размеры пор. Компактные частицы обладают высокой физической прочностью, в то время как частицы с макропорами, имеющие большой объем пор, будут подвержены влиянию, например, давления и сил трения/среза. Когда система 4 из облицовочного и матричного элементов не действует для управления водой или нефтью/газом, текучие среды пласта и мелкозернистые частицы, проходящие через наружный экран 6, будут течь через матрицу 8 и внутренние экраны 7 (и 16) без каких-либо существенных потерь давления. Матрица 8 и внутренние экраны 7 и 16 не действуют в качестве фильтров для мелкозернистых частиц, например песка. Это обеспечивают посредством больших отверстий во внутренних экранах 7 и 16, чем в наружном экране 6, и/или посредством высокой пористости матрицы 8, но более предпочтительно посредством отверстий или прорезей 10 через матрицу 8 и внутренние экраны 7 и 16. Отверстия или разрезы 10 через матрицу 8 и внутренние экраны 7 и 16 могут быть выполнены с помощью любых приемлемых средств и могут иметь любую форму, размер или могут быть выполнены в определенном количестве, но с большей площадью открытия, чем у отверстий и разрезов в экране 6. Когда происходит набухание матрицы 8, например, под действием воды, площади открытия отверстий или прорезей 10, проходящих через матрицу 8, будут уменьшаться, создавая большее сопротивление потоку текучей среды через систему 4 из облицовочного и матричного элементов. В некоторых случаях перед установкой в пласт свободное пространство, образованное отверстиями или прорезями 10, может быть заполнено любой желаемой инертной средой или инертным соединением, делая систему 4 из облицовочного и матричного элементов непроницаемой при ее введении в скважину. При воздействии определенных условий, имеющих место в пласте, желаемой текучей среды (воды или углеводородов),или какого-либо желаемого химического инициатора, либо в надлежащее время, инертная среда может быть растворена с заданной скоро 004357 16 стью, что приводит к увеличению поперечного сечения потока текучей среды через систему 4. При этом, например, скорость добычи нефти в определенное время может быть замедлена для заданных частей или участков зоны добычи в нефтяной скважине. Рассмотрим тот случай, когда, например, в зоне добычи в скважине основное содержимое текучих сред и все мелкозернистые частицы,проходящие через наружный экран 6, должны течь через элемент 4 почти без каких-либо ограничений. Для функции измерения и/или контроля небольшая часть текучих сред, проходящих через наружный экран 6, должна проходить через матрицу 8. Внутри матрицы 8 в текучей среде могут быть растворены индикаторы согласно патенту Норвегии 309884, принадлежащему автору настоящей заявки на патент. Поток текучей среды внутри матрицы 8 также может посредством матрицы 8 выполнять какие-либо желаемые функции управления. Поток 14 текучей среды, проходящий через матрицу 8, обеспечивают посредством градиента давления, создаваемого основным потоком 13 через систему 4, потоком 15 вдоль системы 4, формами, размерами и количеством отверстий или прорезей 10, а также внутренними экранами 7 и 16, как показано на фиг. 6 и 7. Для усиления свободного потока текучей среды 12 и каких-либо мелкозернистых частиц 11 через систему 4, а также для защиты матрицы 8, например, от воздействия каких-либо инструментов скважины и от эрозионного воздействия потока 15, и для предотвращения вымывания потоком 15 индикаторов из матрицы 8 вдоль его пути наружу к поверхности, отверстия или прорези 10 через матрицу 8 могут быть скоординированы посредством отверстий или разрезов в наружном экране 6 и во внутренних экранах 7 и 16, как показано на фиг. 6 и 7. Управление текучей средой Возможная конструкция для выполнения функции управления водой с использованием комбинированной системы 4 из облицовочного и матричного элементов и для набухания матрицы 8 показана на фиг. 8. Когда матрицу 8 в заданное время подвергают воздействию потока воды 12, либо когда на нее будет оказано воздействие каким-либо желаемым химическим инициатором 17 (например, из нагнетательной скважины), матрица 8 набухает, как показано на фиг. 8 А, 8 В и 8 С. Когда матрица 8 набухает,поры в матрице и отверстия или прорези 10,проходящие через матрицу 8, сжимаются, что приводит к уменьшению площадей отверстий в матрице 8 и к увеличению сопротивления потоку 12 текучей среды. Набухание матрицы может быть обратимым, например, в соответствии с содержанием воды или нефти в потоке 12 текучей среды, либо оно может быть постоянным. Другая возможная конструкция для выполнения функции управления потоком текучей 17 среды с использованием комбинированной системы 4 из облицовочного и матричного элементов показана на фиг. 9. Инертной средой 18 заполняют поры матрицы 8 и отверстия или прорези 10, проходящие через матрицу 8 перед установкой системы 4 в скважину 3. При воздействии определенных условий в пласте или какого-либо желаемого химического инициатора 17 инертная среда может быть растворена с заданной скоростью, обеспечивая открытие пор в матрице 8, а также отверстий или прорезей 10,проходящих через матрицу 8, как показано на фиг. 9 А, 9 В и 9 С. Элементы комбинированной системы 4 из облицовки и матрицы предпочтительно могут быть предварительно изготовлены и испытаны на берегу,но также могут быть предварительно изготовлены и испытаны на платформах или судах, находящихся в море. Они могут быть выполнены в виде одной и/или нескольких секций и/или иметь несколько наружных и внутренних диаметров. Механическая прочность, гибкость, физические и химические свойства внутренних экранов 7 и 16, наружного экрана 6 и матрицы 8 могут быть изменены в соответствии с предъявляемыми требованиями. Свойства матрицы 8 могут изменяться в любой секции или по окружности вдоль элементов. Свойства матрицы 8 могут быть заданы заранее, исходя из данных пласта. Наряду с более или менее проницаемой матрицей 8 и отверстиями или прорезями 10, проходящими через матрицу, элементы могут содержать детали из плоского металла, полимера или композитного материала. Элементы системы 4 могут быть подсоединены друг к другу, к другим обычным облицовочным трубам, либо к трубам другого типа (например, к трубопроводу, служащему для добычи) или к оборудованию. Совместно с какими-либо другими участками трубопровода или совместно с оборудованием элементы системы 4 могут формировать трубопровод, легко устанавливаемый в горизонтальные, вертикальные или криволинейные скважины, служащие для добычи или для нагнетания. Комбинированная система из облицовочного и матричного элементов предпочтительно может быть установлена один раз за весь срок ее службы,либо может быть изготовлена пригодной для ее отвода и повторной установки новых элементов. Наряду с использованием в буровой скважине любого типа, как на берегу, так и в море, подобная перфорированная трубопроводная матричная система может быть использована в технологическом оборудовании любого типа (например, в реакторах,сепараторах, накопительных емкостях и т.д., но не ограничиваясь этим оборудованием). Исходя из данных, касающихся пласта, буровая скважина может быть разделена на секции или зоны, которые при наиболее благоприятных условиях должны работать по отдельности, например,чтобы прекратить или ограничить проникновение воды, поступающей в буровую скважину. Изолирование буровой скважины в секциях или зонах мо 004357 18 жет быть выполнено посредством введения непроницаемой матрицы 5 А в свободное пространство между облицовкой 5 В и буровой скважиной 3, и ее сдавливания там. Это показано на фиг. 4. Компоненты для этой матрицы 5 А могут быть заключены внутри комбинированной системы 4 из облицовочного и матричного элементов или могут быть обжаты по экрану 6, используя соответствующие инструменты. Полимеризация матрицы 5 А может быть начата посредством дистанционного управления с помощью каких-либо химических, электрических,магнитных или механических средств. Чтобы предотвратить отход матрицы 5 А от желаемого места,концевые секции могут быть временно или постоянно уплотнены с помощью каких-либо механических или химических средств. На основе описанных предпочтительных вариантов осуществления изобретения квалифицированным специалистам в этой отрасли будет очевидно, что могут быть использованы и другие варианты, включающие в себя концепции изобретения. Предполагается, что те или иные варианты изобретения, представленные выше, даны только в качестве примера и фактический объем изобретения определяют приведенные далее пункты формулы изобретения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Предварительно изготавливаемая комбинированная система (4) из облицовки и матрицы для непрерывного контроля условий или процессов в скважине и/или в пласте и управления ими, содержащая наружное перфорированное трубное средство (6), имеющее достаточную прочность для функционирования в качестве облицовки, внутренний экран (7) и матрицу (8), расположенную между наружным перфорированным трубным средством(6) и внутренним экраном (7), отличающаяся тем,что внутренний экран (7) и матрица (8) снабжены сквозными отверстиями (10), при этом открытые области, обеспечиваемые отверстиями (10), больше, чем открытые области, обеспечиваемые перфорациями в наружном перфорированном трубном средстве (6). 2. Система по п.1, отличающаяся тем, что наружное перфорированное трубное средство (6) образовано в виде сетки из гибкого материала или в виде одиночной перфорированной трубы, либо в виде любого их сочетания. 3. Система по п.1, отличающаяся тем, что внутренний экран (7) образован в виде сетки из гибкого материала или в виде одиночной перфорированной трубы. 4. Система по п.1, отличающаяся тем, что наружное перфорированное трубное средство (6),внутренний экран (7) и материал матрицы (8) содержат металл, неорганический или органический полимер или композитный материал, либо любые их сочетания. 5. Система по п.1, отличающаяся тем, что матрица (8) выполнена пористой и пористость, раз 19 мер пор и распределение пор по размерам являются контролируемыми. 6. Система по п.5, отличающаяся тем, что пористость или проницаемость матрицы (8) автоматически подвергается воздействию окружающей среды, например температуры, потока воды или нефти, либо его инициируют вручную специальными реагентами. 7. Система по п.1, отличающаяся тем, что матрица (8) содержит по меньшей мере один тип полимера или полимерных частиц либо их сочетание. 8. Система по п.1, отличающаяся тем, что матрица (8) представляет собой объемную матрицу,имеющую ту же самую форму, что и геометрический объем полимера, заполняющего матрицу, блок по меньшей мере из одного типа полимерных частиц либо сочетание полимерных частиц в блочном полимере. 9. Система по п.7 или 8, отличающаяся тем,что частицы полимера имеют диаметр от 0,2 до 5000 м. 10. Система по п.9, отличающаяся тем, что диаметр предпочтительно составляет от 0,5 до 3000 м, а наиболее предпочтительно от 0,9 до 1000 м. 11. Система по п.1, отличающаяся тем, что матрица (3) содержит пористую среду или пористое соединение. 12. Система по п.1, отличающаяся тем, что матрица является пористой матрицей (8) или изначально компактной матрицей (8), при этом компактная матрица становится пористой и проницаемой в результате внешнего влияния, причем матрица содержит полимер или химическое соединение,вступающее в реакцию при определенных условиях окружающей среды, например температуре, рН,наличии воды или воздействии инициаторов, с выделением при этом в поток текучей среды веществ,связанных с матрицей химически или посредством адсорбции. 13. Система по п.5 или 12, отличающаяся тем,что объем пор составляет порядка 50-70% свободного объема пор. 14. Система по п.1, отличающаяся тем, что матрица (8) содержит компоненты, обнаруживаемые после их выделения из матрицы. 15. Система по п.1, отличающаяся тем, что матрица (8) содержит химически информирующий индикатор или индикаторы для непрерывного ведения контроля определенных условий в скважине 20 или в пласте. 16. Система по п.15, отличающаяся тем, что индикаторы адсорбированы матрицей (8) или химически связаны с ней. 17. Система по п.1, отличающаяся тем, что содержит гибкий перфорированный материал (9) из металла или неорганического, либо органического полимера или их сочетания, размещенный между наружным перфорированным трубным средством(6) и внутренним экраном (7) и повышающий прочность и устойчивость системы. 18. Система по п.1, отличающаяся тем, что она предварительно изготовлена приемлемой длины из соединенных друг с другом или с другим трубопроводом элементов, формирующих трубопровод,легко устанавливаемый в горизонтальные, вертикальные или криволинейные скважины. 19. Система по п.1, отличающаяся тем, что содержит секционную закупоривающую систему (5) для изоляции друг от друга различных секций системы. 20. Система по п.1, отличающаяся тем, что она разделена на разные секции вдоль скважины, при этом матрица (8) имеет разные свойства в разных секциях. 21. Способ управления процессами в скважине или пласте и непрерывного контроля этих процессов с использованием системы по п.1, состоящей из облицовки и матрицы, отличающийся тем,что создают матрицу с определенными свойствами на основе данных, касающихся пласта, перед установкой в пласт, устанавливают в пласт комбинированную систему из облицовки и матрицы, управляют скважиной или осуществляют непрерывный контроль за скважиной путем взаимодействия с матрицей или посредством матрицы. 22. Применение комбинированной системы из облицовки и матрицы согласно одному из пп.1-20 в любом технологическом оборудовании, подобном,например, реакторам, сепараторам и накопительным емкостям. 23. Применение комбинированной системы из облицовки и матрицы согласно одному из пп.1-20 в скважине для добычи газа, или нефти, или воды или в нагнетательной скважине для завершения скважины, управления ею и ведения непрерывного контроля.
МПК / Метки
МПК: E21B 43/08
Метки: комбинированная, система, облицовки, матрицы
Код ссылки
<a href="https://eas.patents.su/12-4357-kombinirovannaya-sistema-iz-oblicovki-i-matricy.html" rel="bookmark" title="База патентов Евразийского Союза">Комбинированная система из облицовки и матрицы</a>
Предыдущий патент: Балка
Следующий патент: Несущая балка для высокоскоростного рельсового транспортного средства
Случайный патент: Устройство и способ получения вспененного материала