Номер патента: 22199

Опубликовано: 30.11.2015

Автор: Либель Фолькер

Скачать PDF файл.

Формула / Реферат

1. Трубная конструкция для геотермальных зондов по меньшей мере из двух труб (1, 2), которые имеют по меньшей мере один слой, окружающий внутренний канал (3), причем одна из труб (2) образует линию подачи, а другая (1) - линию возврата, причем трубная конструкция снабжена на одном конце по меньшей мере одним соединительным элементом (4), имеющим по меньшей мере один слой, причем по меньшей мере одна из труб (1, 2) и соединительный элемент (4), по меньшей мере, частично выполнены из несшитого полимерного материала, отличающаяся тем, что несшитый полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) представляет собой полиэтилен, который имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч и значение MRS (минимальная длительная прочность) минимум 10,0 МПа при 20°С более 50 лет, причем материал по меньшей мере одного слоя соединительного элемента встык сварен с материалом по меньшей мере одного слоя трубы (1, 2), окружающего внутренний канал (3), причем трубная конструкция для геотермальных зондов имеет отношение диаметра к толщине стенок 11:1.

2. Трубная конструкция по п.1, отличающаяся тем, что полимерный материал по меньшей мере одного слоя соединительного элемента (4) имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч.

3. Трубная конструкция по п.1 или 2, отличающаяся тем, что полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 5000 ч.

4. Трубная конструкция по п.1, отличающаяся тем, что полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) имеет значение MRS (минимальная длительная прочность) минимум 12,5 МПа при 20°С более 50 лет.

5. Трубная конструкция по любому из пп.1-4, отличающаяся тем, что одна из труб (1, 2) выполнена в форме спирали.

6. Трубная конструкция по п.5, отличающаяся тем, что спираль имеет постоянный диаметр.

7. Трубная конструкция по п.5, отличающаяся тем, что спираль имеет переменный диаметр.

8. Трубная конструкция по любому из пп.5-7, отличающаяся тем, что неспиралеобразная труба снабжена теплоизоляцией (21).

9. Устройство получения или накопления глубинного тепла земной коры, содержащее трубную конструкцию по одному из пп.1-8.

Рисунок 1

Текст

Смотреть все

Трубная конструкция для геотермальных зондов согласно этому изобретению состоит по меньшей мере из двух труб (1, 2), которые имеют по меньшей мере один слой, окружающий внутренний канал (3), причем одна из труб (2) образует линию подачи, а другая (1) линию возврата. Трубная конструкция снабжена на одном конце по меньшей мере одним соединительным элементом (4),имеющим по меньшей мере один слой. По меньшей мере одна из труб (1, 2) и соединительный элемент (4), по меньшей мере, частично выполнены из несшитого полимерного материала, причем несшитый полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) представляет собой полиэтилен, который имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч и значение MRS(минимальная длительная прочность) минимум 10,0 МПа при 20 С более 50 лет. Материал по меньшей мере одного слоя соединительного элемента встык сварен с материалом по меньшей мере одного слоя трубы (1, 2), окружающего внутренний канал (3). Кроме этого, трубная конструкция для геотермальных зондов имеет отношение диаметра к толщине стенок 11:1. Изобретение относится к трубной конструкции для геотермальных зондов согласно ограничительной части п.1 формулы изобретения. Такие трубные конструкции для геотермальных зондов широко известны из уровня техники. Эти трубные конструкции имеют задачу принимать тепло из земли или соответственно отдавать тепло в землю. Так, например, в полезной модели DE 202004007567 U1 описан геотермальный зонд для укладки в буровую скважину в грунте. Этот геотермальный зонд содержит внешнюю трубу, образующую наружную стенку геотермального зонда, которая замкнута в его нижнем конце, и внутреннюю трубу, проходящую внутри внешней трубы, причем кольцевой объем между внешней трубой и внутренней трубой и внутренний объем внутренней трубы образуют трубопроводы для среды-теплоносителя. При этом внешняя труба, по меньшей мере, на большей части ее продольной протяженности выполнена как гофрированная труба. Далее известны трубные конструкции для геотермальных зондов, в которых используются пары труб, которые в их нижнем конце имеют соединительную дугу или соответственно соединительную деталь. Одна труба образует подводящий трубопровод, а другая труба - возвратную линию. Однако в одной буровой скважине могут использоваться также несколько таких пар труб, которые в их нижнем конце имеют в качестве элементов связи одну или несколько фасонных деталей. Далее из ЕР 0582118 А 1 известна трубная конструкция из длинных, проходящих параллельно пластмассовых труб, которые связаны в нижнем конце. При этом по меньшей мере одна головная часть с помощью сварки или склейки гидравлически плотно связана по меньшей мере с двумя прямыми параллельными длинными трубами и имеется по меньшей мере одна часть основания, которая с помощью сварки или склейки гидравлически плотно связана по меньшей мере с одной из прямых труб. Наконец, из полезной модели DE 20202578 U1 известна трубная конструкция, для изготовления которой требуются трубы из сшитого полиэтилена. Дальше известны трубные конструкции для геотермальных зондов, в которых участок трубы выполнен в форме спирали. При этом спираль может иметь постоянный или переменный диаметр. Дальше известно, как такие трубные конструкции для геотермальных зондов помещать в буровые скважины и затем заполнять эти буровые скважины материалом с хорошей теплопроводностью. Однако такие трубные конструкции для геотермальных зондов, в частности, из несшитых полимерных материалов, могут длительно использоваться только до определенных рабочих температур, примерно до 40 С. Кроме того, несшитые материалы, используемые до сих пор для трубных конструкций для геотермальных зондов, обнаруживают значимое медленное разрастание трещин, вследствие чего царапины или соответственно надрезы, возникшие, в частности, при транспортировке, манипулировании на строительной площадке и укладке в буровую скважину, могут вести при эксплуатации к разрушению трубных конструкций геотермальных зондов. Сверх того, трубные конструкции из несшитых полимерных материалов для геотермальных зондов согласно уровню техники имеют тот существенный недостаток, что они не являются устойчивыми к точечным нагрузкам. Вопреки прежней оценке нужно, тем не менее, также при трубных конструкциях для геотермальных зондов исходить из того, что в установленном состоянии действуют точечные нагрузки. В противовес к образующим уровень техники представлениям трубные конструкции для геотермальных зондов расположены вовсе не центрально в буровой скважине и не окружены бетонно-бентонитной смесью, а всегда частично прилегают к стенке буровой скважины. Далее, опять-таки, вопреки прежним оценкам и представлениям, качество стенки буровой скважины должно рассматриваться не как гладкое, а как неровное, зазубренное. Поэтому нужно считаться с тем,что на стенки трубных конструкций для геотермальных зондов оказывают влияние точечные нагрузки. Дополнительно до сих пор недостаточно учитывалось, что после укладки трубных конструкций для геотермальных зондов в буровую скважину точечные нагрузки могут оказывать также и падающие камни. И, наконец, до сих пор не учитывалось, что трубные конструкции для геотермальных зондов подвержены значительным переменным нагрузкам. Уже в чистом режиме отопления при включении теплового насоса возникают очень быстрые изменения температуры, примерно на 10K, вместе со связанными с этим тепловыми расширениями, и при режиме отопления и охлаждения эти изменения температуры могут составлять до 40K. Эти нагрузки могут вести, в частности, при длительной работе к образованию трещин в лежащей напротив точечной нагрузки внутренней стороне трубных конструкций для геотермальных зондов, и эти трещины могут дальше разрастаться до разрушения. Трубные конструкции для геотермальных зондов из сшитых полимерных материалов, правда, устойчивы против точечных нагрузок и не проявляют медленного разрастания трещин, однако проблема там состоит в том, что при установке элементов связи пар труб они не могут свариваться встык, так что изготовление такой трубной конструкции для геотермальных зондов является материалоемким и связано с большими денежными затратами. Задачей изобретения является устранение недостатков известного уровня техники и предоставление трубной конструкции для геотермальных зондов, которая является малозатратной и экономичной в про-1 022199 изводстве, может устанавливаться просто, эффективно и без повреждений и имеет улучшенные механические показатели, в частности, сбалансированные характеристики стойкости трубной конструкции против внешних точечных нагрузок, а также внешних царапин и трещин. Согласно изобретению это решается с помощью трубной конструкции с признаками п.1 формулы изобретения. Предпочтительные варианты выполнения представлены в зависимых пунктах формулы изобретения. Предложена трубная конструкция для геотермальных зондов по меньшей мере из двух труб, которые имеют по меньшей мере один слой, окружающий внутренний канал, причем одна из труб образует линию подачи, а другая - линию возврата, и по меньшей мере одна из труб, по меньшей мере частично,выполнена из несшитого полимерного материала, причем полимерный материал по меньшей мере одного слоя труб имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч. В усовершенствованном варианте выполнения предлагается трубная конструкция для геотермальных зондов, по меньшей мере, состоящая из двух труб, которые имеют по меньшей мере один слой, окружающий внутренний канал, и которые на одном конце имеют по меньшей мере один соединительный элемент, содержащий по меньшей мере один слой, причем по меньшей мере одна из труб, по меньшей мере частично, выполнена из несшитого полимерного материала, причем полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч. В следующей форме выполнения соответствующих изобретению трубных конструкций предлагаются геотермальные зонды, у которых одна труба выполнена в форме спирали. При этом спираль может иметь постоянный или переменный диаметр. При дальнейшем усовершенствовании этой формы выполнения изобретение предусматривает снабжать неспиралеобразную трубу теплоизоляцией. При этом за счет соответствующей изобретению трубной конструкции для геотермальных зондов может быть достигнута значительная стойкость к точечным нагрузкам и в области температур до 20 С не будет происходить никакого медленного разрастания трещин, которое могло бы вести в пределах определенного срока службы, примерно 50 лет, к отказу трубных конструкций для геотермальных зондов. Следующее преимущество соответствующих изобретению трубных конструкций для геотермальных зондов видится в том, что они малозатратны и рентабельны в производстве, а также могут встык свариваться с соответствующими соединительными элементами. Таким образом, может быть представлено соответствующая изобретению трубная конструкция для геотермальных зондов, которая рентабельна и малозатратна в производстве и которая однако также может эффективно транспортироваться и соответственно монтироваться без повреждений материала трубной конструкции для геотермальных зондов. Следующее преимущество соответствующей изобретению трубной конструкции для геотермальных зондов заключается в том, что полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента имеет значение FNCT-теста по стандарту ISO 16770 минимум 5000 ч. За счет этого благоприятного выполнения соответствующей изобретению трубной конструкции для геотермальных зондов достигается еще более высокая стойкость к точечным нагрузкам и при длительной эксплуатации явно сниженное разрастание трещин и выемок. Дополнительно при этом варианте выполнения достигается стойкость к точечным нагрузкам при температуре до 40 С, за счет чего может обеспечиваться длительная надежность трубных конструкций для геотермальных зондов с соответственно высоким диапазоном температур. В следующем также благоприятном варианте выполнения трубной конструкции для геотермальных зондов полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента имеет значение MRS (минимальная длительная прочность) минимум в 10 МПа при 20 С более 50 лет. При этом трубные конструкции для геотермальных зондов с отношением диаметра к толщине стенок 11:1 могут длительно выдерживать давление в 20 бар. В следующем варианте выполнения соответствующей изобретению трубной конструкции для геотермальных зондов полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента имеет значение MRS (минимальная длительная прочность) минимум в 12,5 МПа при 20 С более 50 лет. При этом выгодным образом могут предоставляться в распоряжение соответствующие изобретению трубные конструкции для геотермальных зондов, которые гарантируют свободную от проблем длительную работу в пределах срока службы примерно до 50 лет без нанесения первичных повреждений при транспортировке или монтаже, в частности, в буровые скважины. В следующем также благоприятном варианте выполнения соответствующей изобретению трубной конструкции полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента содержит по меньшей мере один повышающий стойкость к ультрафиолетовому излучению наполнитель,с которым могут повышаться допустимые промежутки времени для свободного складирования соответствующих изобретению трубных конструкций для геотермальных зондов. Далее при соответствующих изобретению трубных конструкциях для геотермальных зондов пред-2 022199 ставляется выгодным, если полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента содержит по меньшей мере один повышающий механическую прочность наполнитель или соответственно армирующий материал. Таким образом, с помощью добавок известных наполнителей или соответственно армирующих материалов, как, например, стекловолокна, может предоставляться в распоряжение соответствующая изобретению трубная конструкция для геотермальных зондов, которая без проблем и экономично может отвечать параметрам согласно законодательным требованиям и соответственно нормам. Соответствующая изобретению трубная конструкция для геотермальных зондов благоприятным образом выполнена так, что полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента содержит по меньшей мере один наполнитель, повышающий диффузионную стойкость. При этом эти материалы наполнителей могут вводиться в виде добавок примерно от 1 до 30% и обеспечивают, таким образом, оптимально устанавливаемые механические свойства соответствующей изобретению трубной конструкции для геотермальных зондов. Далее при соответствующей изобретению трубной конструкции для геотермальных зондов представляется благоприятным, если полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента содержит по меньшей мере один придающий окраску наполнитель, так что, например, при трубных конструкциях для геотермальных зондов, которые могут укладываться друг в друга с помощью различных окрашивающих наполнителей, могут обозначаться линии подвода и соответственно возврата. Следующее преимущество соответствующей изобретению трубной конструкции для геотермальных зондов заключается в том, что полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента содержит примесь по меньшей мере одного наполнителя, оказывающего антистатическое действие, причем поверхностное сопротивление трубы и/или соединительного элемента составляет самое большее 10-10 Ом/см. Изобретение представляет далее трубную конструкцию для геотермальных зондов, у которой полимерный материал по меньшей мере одного слоя труб и/или соединительного элемента содержит примесь по меньшей мере одного электропроводящего наполнителя, причем поверхностное сопротивление труб и/или соединительного элемента составляет самое большее 10-6 Ом/см. Эти добавки могут вводиться в полимерный материал в общем от примерно 1 до примерно 20% в зависимости от законодательных требований, а также параметрических норм. Исходя из тестовых условий согласно стандарту ISO 16770 в первом примере выполнения при 80 С,4,0 МПа и в присутствии 2% структурирующего вещества Arkopal, у материала для наружного слоя соответствующей изобретению трубы из полиэтилена РЕ 100 согласно стандарту EN 12201 с наружным диаметром 110+0,6 мм, а также толщиной стенки 10,0+0,3 мм значение FNCT-теста составляет от примерно 200 до 750 ч, и значение FNCT-теста материала внутреннего слоя соответствующей изобретению трубы из полиэтилена с толщиной стенки примерно 1,5 мм - примерно 3000 ч. В следующей благоприятной форме выполнения эта многослойная труба имеет внутренний слой из полиэтилена с толщиной стенки примерно 0,7 мм, со значением FNCT-теста примерно 6000 ч, при 80 С,4,0 МПа и в присутствии 2% структурирующего вещества Arkopal. Соответствующая изобретению трубная конструкция для геотермальных зондов ниже описывается более подробно на примерах выполнения, не являющихся ограничительными. Фиг. 1 показывает схематическое изображение сечения соответствующей изобретению трубной конструкции для геотермальных зондов; фиг. 2 показывает схематическое изображение сечения следующей соответствующей изобретению трубной конструкции для геотермальных зондов; фиг. 3 показывает схематический вид сбоку с частичным сечением следующей соответствующей изобретению трубной конструкции для геотермальных зондов; фиг. 4 показывает схематический вид сбоку с частичным сечением следующей соответствующей изобретению трубной конструкции для геотермальных зондов. На фиг. 1 представлена соответствующая изобретению трубная конструкция, две трубы 1, 2, которые имеют по меньшей мере один слой, окружающий внутренний канал 3. На свободных концах 10, 20 труб 1, 2 расположен соединительный элемент 4, который непроницаемо для жидкости связан с трубами 1, 2. Трубы 1, 2, а также соединительный элемент 4 выполнены из несшитого полимерного материала,например полиэтилена. Полимерный материал по меньшей мере одного слоя труб 1, 2 и соединительного элемента 4 имеет в этом примере выполнения значение FNCT-теста 3550 ч. Далее полимерный материал по меньшей мере одного слоя труб 1, 2 и соединительного элемента 4 образован так, что он имеет значение MRS 11,1 МПа, при 20 С более 50 лет. На фиг. 2 представлено следующее схематическое изображение соответствующей изобретению трубной конструкции для геотермальных зондов из двух труб 1, 2. В этом примере выполнения труба 2 концентрически установлена во внутренний канал 3 трубы 1. Однако объемом защиты данного изобретения предусматривается также, что во внутренний канал 3 трубы 1 могут устанавливаться несколько труб 2, которые могут располагаться как концентрически, так и эксцентрически. На свободном конце 10 трубы 1 расположен соединительный элемент 4, который посредством неразъемного соединения, как например сваривания, непроницаемо для жидкости связан со свободным концом 10 трубы 1. Труба 1, а также труба 2 имеют приблизительно равную длину, так что между свободным концом 20 трубы 2 и противолежащим соединительным элементом 4 возникает свободное пространство, в котором транспортируемая через внутренний канал 3 трубы 2 жидкость может проводиться обратно через внутренний канал 3 трубы 1. Полимерный материал по меньшей мере одного слоя трубы 1 имеет в этом примере выполнения значение FNCT-теста 5550 ч и значение MRS в 13,1 МПа. Полимерный материал по меньшей мере одного слоя трубы 2 имеет в этом примере выполнения значение FNCT-теста 3100 ч и значение MRS в 10,5 МПа при 20 С более 50 лет. На фиг. 3 показано в еще одном схематическом изображении, что труба 1, которая образует передний участок трубной конструкции для геотермальных зондов, расположена в форме спирали. При этом спираль имеет постоянный диаметр. Показанная труба 2 - это линия возврата трубной конструкции. На фиг. 4, наконец, показано в следующем схематическом изображении, что труба 1, которая расположена в форме спирали, посредством соединительного элемента 4 связана с трубой 2. Труба 2 служит в этом устройстве линией возврата. Труба 2 снабжена теплоизоляцией 21, которая уменьшает потерю тепла проведенной или соответственно собранной в трубе 2 жидкости. В качестве теплоизоляции 21 для этого может быть предусмотрен слой пены или слой, который за счет структуры, выбора материала, добавок и т.д. имеет уменьшенную теплопроводность. Соединительный элемент 4 соответствующей изобретению трубной конструкции для геотермальных зондов может быть выполнен по-разному, в частности, идея изобретения охватывает также известные средства для непроницаемой для жидкости связи соединительного средства 4 с трубой 1, 2 в форме цельных или составных вставных или сварных соединительных деталей из любых материалов, которые могут быть выполнены также как предохранительная оболочка, сдвижная оболочка, стопорный элемент,электросварная муфта и т.п. Идея изобретения охватывает также трубные конструкции для геотермальных зондов, в которых соединительное средство 4 механически защищено с помощью дополнительных компонентов, как например, охватывающих полусфер, покрытия пеной или покрытия бесшовной оболочкой соэкструдированием. Идея изобретения охватывает также устройство получения или накопления глубинного тепла земной коры с трубной конструкцией согласно данному изобретению. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Трубная конструкция для геотермальных зондов по меньшей мере из двух труб (1, 2), которые имеют по меньшей мере один слой, окружающий внутренний канал (3), причем одна из труб (2) образует линию подачи, а другая (1) - линию возврата, причем трубная конструкция снабжена на одном конце по меньшей мере одним соединительным элементом (4), имеющим по меньшей мере один слой, причем по меньшей мере одна из труб (1, 2) и соединительный элемент (4), по меньшей мере, частично выполнены из несшитого полимерного материала, отличающаяся тем, что несшитый полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) представляет собой полиэтилен, который имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч и значение MRS (минимальная длительная прочность) минимум 10,0 МПа при 20 С более 50 лет, причем материал по меньшей мере одного слоя соединительного элемента встык сварен с материалом по меньшей мере одного слоя трубы (1, 2), окружающего внутренний канал (3), причем трубная конструкция для геотермальных зондов имеет отношение диаметра к толщине стенок 11:1. 2. Трубная конструкция по п.1, отличающаяся тем, что полимерный материал по меньшей мере одного слоя соединительного элемента (4) имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 3000 ч. 3. Трубная конструкция по п.1 или 2, отличающаяся тем, что полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) имеет значение FNCT-теста (испытание всего надреза на ползучесть) по стандарту ISO 16770 минимум 5000 ч. 4. Трубная конструкция по п.1, отличающаяся тем, что полимерный материал по меньшей мере одного слоя труб (1, 2) и/или соединительного элемента (4) имеет значение MRS (минимальная длительная прочность) минимум 12,5 МПа при 20 С более 50 лет. 5. Трубная конструкция по любому из пп.1-4, отличающаяся тем, что одна из труб (1, 2) выполнена в форме спирали. 6. Трубная конструкция по п.5, отличающаяся тем, что спираль имеет постоянный диаметр. 7. Трубная конструкция по п.5, отличающаяся тем, что спираль имеет переменный диаметр. 8. Трубная конструкция по любому из пп.5-7, отличающаяся тем, что неспиралеобразная труба снабжена теплоизоляцией (21). 9. Устройство получения или накопления глубинного тепла земной коры, содержащее трубную конструкцию по одному из пп.1-8.

МПК / Метки

МПК: F24J 3/08, F16L 9/12

Метки: трубная, конструкция

Код ссылки

<a href="https://eas.patents.su/6-22199-trubnaya-konstrukciya.html" rel="bookmark" title="База патентов Евразийского Союза">Трубная конструкция</a>

Похожие патенты