Устройство регулятора потока текучей среды, исполнительный механизм клапана и способ его изготовления

Скачать PDF файл.

Формула / Реферат

1. Устройство регулятора потока текучей среды, содержащее впускную камеру давления и выпускную камеру давления, разделенные перегородкой, которая имеет отверстие, проходящее между впускной камерой давления и выпускной камерой давления, причем впускная камера давления подсоединена к источнику газа, который поддерживает газ во впускной камере давления под давлением впускной камеры давления, существенно превышающем давление в выпускной камере давления, чтобы вызвать дросселируемый поток со звуковой скоростью газа через отверстие из впускной камеры давления в выпускную камеру давления, клапан, размещенный для открытия и закрытия отверстия, причем клапан включает седло клапана на впускном отверстии и элемент закрытия, который точно совмещен с седлом клапана для обеспечения закрытия впускного отверстия, элемент закрытия размещен на исполнительном механизме, который обеспечивает перемещение элемента закрытия между открытым положением, в котором элемент закрытия не закрывает впускное отверстие, обеспечивая дросселируемый поток со звуковой скоростью газа через отверстие, и закрытым положением, в котором элемент закрытия точно совмещен с седлом клапана и закрывает впускное отверстие, предотвращая дросселируемый поток со звуковой скоростью газа через отверстие, исполнительный механизм, включающий удлиненный рычаг, имеющий первый слой пьезоэлектрического материала, покрытого вторым материалом, причем первый пьезоэлектрический материал способен расширяться больше, чем второй материал, под действием напряжения одной полярности, и способен сжиматься сильнее, чем второй материал, под действием напряжения противоположной полярности, при этом исполнительный механизм инкапсулирован с помощью слоя металлического покрытия, и регулятор, подсоединенный к исполнительному механизму таким образом, что вызывает колебание исполнительного механизма клапана назад и вперед между открытым положением и закрытым положением в цикле с временной модуляцией, который устанавливает эффективный массовый расход текучей среды, проходящей через отверстие между максимальным значением, при котором клапан остается всегда в открытом положении, и минимальным значением, при котором клапан остается всегда в закрытом положении.

2. Устройство по п.1, в котором отверстие включает сужение в виде горловины отверстия.

3. Устройство по п.2, в котором сужение в виде горловины отверстия размещено во впускном отверстии.

4. Устройство по п.2, в котором сужение в виде горловины отверстия размещено в выпускном отверстии.

5. Устройство по п.2, в котором сужение в виде горловины отверстия размещено между впускным отверстием и выпускным отверстием.

6. Устройство по п.1, в котором отверстие включает сопло между впускным отверстием и выпускным отверстием, при этом сопло включает сходящуюся секцию, сведенную на конус радиально внутрь к суженной горловине, и расходящуюся секцию, сведенную на конус радиально наружу от суженной горловины к выпускному отверстию.

7. Устройство по п.1, в котором исполнительный механизм включает соленоид.

8. Устройство по п.1, в котором элемент закрытия имеет плоскую поверхность, которая больше седла клапана.

9. Устройство по п.8, в котором элемент закрытия представляет собой диск.

10. Устройство по п.1, в котором вторым материалом является второй пьезоэлектрический материал, который сжимается, когда первый пьезоэлектрический материал расширяется, и расширяется, когда первый пьезоэлектрический материал сжимается.

11. Устройство по п.1, которое включает схему приводного устройства исполнительного механизма, которая вырабатывает сигналы приводного устройства исполнительного механизма переменных напряжений с временной модуляцией противоположных полярностей, соединенную с изгибаемым устройством.

12. Устройство по п.11, которое включает регулятор с временной модуляцией, соединенный со схемой приводного устройства исполнительного механизма, причем схема приводного устройства исполнительного механизма реагирует на регулятор с временной модуляцией таким образом, что вырабатывает положительные напряжения и отрицательные напряжения в рабочих циклах, которые содержат установленные отношения времени, в течение которого клапан находится в открытом положении, к общему времени колебания клапана через полный цикл открытого положения и закрытого положения.

13. Устройство по п.11, в котором регулятор с временной модуляцией регулируется таким же образом, как рабочийцикл.

14. Устройство по п.1, в котором металлическое покрытие выполнено из нержавеющей стали.

15. Устройство по п.1, которое включает диэлектрический слой, расположенный между изгибаемым устройством и слоем металлического покрытия.

16. Устройство по п.15, в котором диэлектрический слой содержит материал ParyleneTM.

17. Устройство по п.16, в котором диэлектрический слой материала ParyleneTM нанесен напылением на изгибаемое устройство.

18. Исполнительный механизм клапана, содержащий изгибаемое устройство, включающее, по меньшей мере, один пьезоэлектрический элемент, при этом изгибаемое устройство инкапсулировано покрываемым материалом, который является более коррозионностойким, чем пьезоэлектрическое устройство.

19. Исполнительный механизм клапана по п.18, в котором покрываемый материал содержит металл.

20. Исполнительный механизм клапана по п.19, в котором металлом является нержавеющая сталь.

21. Исполнительный механизм клапана по п.20, в котором металлом является нержавеющая сталь марки SS316.

22. Исполнительный механизм клапана по п.19, который включает диэлектрический материал, размещенный между пьезоэлектрическим изгибаемым устройством и покрываемым материалом.

23. Исполнительный механизм клапана по п.22, в котором диэлектрическим материалом является пластмасса.

24. Исполнительный механизм клапана по п.23, в котором пластмасса наносится напылением на подложку.

25. Исполнительный механизм клапана по п.24, в котором пластмассой является ParyleneTM.

26. Исполнительный механизм клапана по п.22, в котором диэлектрический материал содержит окись алюминия.

27. Исполнительный механизм клапана по п.22, который включает материал подложки, размещенный между пьезоэлектрическим изгибаемым устройством и диэлектрическим материалом.

28. Исполнительный механизм клапана по п.27, в котором материал подложки содержит металл.

29. Исполнительный механизм клапана по п.28, в котором металл материала подложки включает никель.

30. Пьезоэлектрический исполнительный механизм для использования в коррозионной среде, содержащий, по меньшей мере, одно пьезоэлектрическое устройство, металлический слой подложки, нанесенный на пьезоэлектрическое устройство, слой диэлектрического материала, нанесенный на металлический слой подложки, и покрываемый металл, нанесенный на диэлектрический слой.

31. Пьезоэлектрический исполнительный механизм по п.30, в котором металлический слой подложки включает никель.

32. Пьезоэлектрический исполнительный механизм по п.30, в котором диэлектрический слой содержит пластмассу.

33. Пьезоэлектрический исполнительный механизм по п.32, в котором пластмасса наносится напылением на слой подложки.

34. Пьезоэлектрический исполнительный механизм по п.33, в котором диэлектрический слой имеет толщину менее чем 0,0254 мм.

35. Пьезоэлектрический исполнительный механизм по п.33, в котором пластмассой является ParyleneTM.

36. Пьезоэлектрический исполнительный механизм по п.30, в котором покрываемым металлом является нержавеющая сталь.

37. Пьезоэлектрический исполнительный механизм по п.36, в котором используется нержавеющая сталь марки SS316.

38. Пьезоэлектрический исполнительный механизм по п.30, в котором покрываемый металл имеет толщину менее чем 0,0254 мм.

39. Исполнительный механизм клапана для использования в средах, содержащих очень реактивные или коррозионные газы, такие как фтор и другие галогены, содержащий изгибаемое устройство, включающее два удлиненных пьезоэлектрических элемента, изготовленных слояьш вместе с токопроводящим металлом между двумя пьезоэлектрическими устройствами, металлический слой подложки, нанесенный на пьезоэлектрическое изгибаемое устройство, и покрытие из нержавеющей стали, которое инкапсулирует пьезоэлектрическое изгибаемое устройство и металлический слой подложки, включая диэлектрический слой, размещенный между покрытием из нержавеющей стали и металлическим слоем подложки.

40. Исполнительный механизм клапана по п.39, в котором диэлектрический слой имеет толщину менее чем 0,0254 мм, и покрытие из нержавеющей стали имеет толщину менее чем 0,0254 мм.

41. Исполнительный механизм клапана по п.39, который включает элемент закрытия, прикрепленный к пьезоэлектрическому изгибаемому устройству связующим веществом, и покрытие из нержавеющей стали, также покрытое связующим веществом.

42. Исполнительный механизм клапана по п.41, в котором диэлектрический слой размещен между связующим веществом и пьезоэлектрическим изгибаемым устройством.

43. Способ изготовления исполнительного механизма клапана, который содержит, по меньшей мере, одно пьезоэлектрическое устройство, включающий нанесение слоя металлического материала подложки на пьезоэлектрическое устройство, нанесение слоя диэлектрического материала на материал подложки и нанесение слоя металлического покрываемого материала, который является более коррозионно-стойким, чем пьезоэлектрическое устройство, на диэлектрический материал.

44. Способ по п.43, включающий нанесение слоя диэлектрического материала на материал подложки посредством осаждения пластмассы на материал подложки.

45. Способ по п.44, включающий осаждение пластмассы на материал подложки посредством распыления.

46. Способ по п.44, включающий осаждение пластмассы толщиной менее чем 0,0254 мм на материал подложки.

47. Способ по п.45, в котором пластмассой является ParyleneTM.

48. Способ по п.43, в котором металлический cлой подложки включает никель.

49. Способ по п.43, включающий нанесение слоя металлического покрытия на диэлектрический материал посредством осаждения покрытия из нержавеющей стали на диэлектрический слой.

50. Способ по п.49, включающий осаждение покрытия из нержавеющей стали толщиной не менее чем 0,0254 мм.

51. Способ по п.50, в котором покрытие из нержавеющей стали является нержавеющей сталью марки SS316.

52. Способ по п.49, включающий закрепление элемента закрытия клапана из нержавеющей стали на часть диэлектрического слоя с помощью связующего вещества перед осаждением нержавеющей стали и затем осаждение нержавеющей стали для инкапсулирования пьезоэлектрического устройства, металлического слоя подложки, диэлектрического слоя и связующего вещества с покрытием из нержавеющей стали.

Рисунок 1

 

Текст

Смотреть все

1 Эта заявка является частичным продолжением находящейся в процессе одновременного рассмотрения заявки на патент США 08/799304, поданной 11 февраля 1997 г. Данное изобретение, в общем, касается устройства регулятора потока текучей среды и,в частности, устройства регулятора массового расхода для газа, проходящего с очень низкими скоростями и низкими давлениями, исполнительного механизма клапана и способа его изготовления. Существует много регуляторов потока,включая регуляторы массового расхода, многочисленные устройства и принципы работы для измерения текущих газов. Однако современные технологии управления потоком при очень низких скоростях течения газа имеют много нерешенных проблем в отношении точности, надежности и долговечности, несмотря на увеличивающуюся потребность в таких регуляторах потоков с очень низкой скоростью течения газов. В полупроводниковой промышленности,например, применяют очень точные потоки подаваемых газов в печи для реакционной плавки,которые обычно работают в вакууме, где для образования полупроводниковых приборов на подложки осаждают тонкие пленки материалов. Наиболее общая технология регуляторов массового расхода, которая используется в настоящее время в полупроводниковой промышленности для управления подводимыми газами,заключается в изменяемом отверстии в сочетании с ограничителем потока и обходном канале ограничения потока, нагревателе в обходном канале и термопаре в обходном канале ниже по течению от нагревателя. Нагреватель сообщает тепловую энергию газу, который течет по обходному каналу, и газ переносит тепловую энергию к термопаре, которая нагревает термопару и обеспечивает возможность ей вырабатывать напряжения, соответствующие температуре термопары. Чем больше открыто изменяемое отверстие, тем больше газа течет по обходному каналу, больше тепла будет переноситься газом от нагревателя к термопаре, выше полученная температура термопары, тем выше будет напряжение на термопаре. Напряжение термопары измеряется и обрабатывается в измерительной аппаратуре для индикации скорости потока газа и для регулирования и поддержания изменяемого отверстия открытым на требуемую величину для получения требуемых скоростей течения газа. Такие современные системы регуляторов потока имеют проблемы надежности, медленного времени срабатывания и ограниченных динамических диапазонов. Проблемы надежности в значительной степени обусловлены устойчивыми отказами, такими как засорения, и гибкими отказами, такими как чрезмерный дрейф, 001508 2 который требует частых перекалибровок измерительной аппаратуры. Такие отказы вызывают существенные простои и приводят к уменьшению выхода полупроводниковых устройств из печей для реакционной плавки. Из-за медленного срабатывания термопар для изменений скоростей потока, обычно составляющего приблизительно одну секунду, соответственно медленной обратной связи сигналов открывания или закрывания изменяемого отверстия и полученных перерегулирований и недорегулирований отверстий, требуемых для конкретных скоростей потока газа, возникают проблемы управления. Для поддержания повторяемости и линейности измерений скорости потока и управления требуются рабочие давления в диапазонах(137,90103 - 172,37103 Па), и даже в таком случае при этой технологии можно ожидать линейность и повторяемость, составляющие всего лишь 1% и более вероятно 6%. Динамический диапазон таких регуляторов, который также известен под названием коэффициента уменьшения (отношение максимальной измеряемой скорости потока или максимальной установленной точки клапана к минимальной измеримой скорости потока или минимальной установленной точке), ограничен отношением приблизительно 100:1. Более точные и надежные регуляторы массового расхода подводимых газов в полупроводниковой промышленности могли бы не только повышать управление качеством и получаемым качеством полупроводниковых приборов, но могли бы также снижать время простоя для перекалибрования и чистки, увеличивать использование газа и увеличивать производительность. Чем больше динамических диапазонов, тем больше можно осуществлять вариантов использований и универсальности оборудования и потоков газа для различных напылений и составов устройств. Кроме того, для многих других применений также необходимы более точные и воспроизводимые регулирования течения газа, лучшая надежность и большие динамические диапазоны. Соответственно, основной задачей настоящего изобретения является выполнение регулятора потока для очень низких скоростей течения газа. Более конкретной задачей данного изобретения является выполнение регулятора потока газа более точным и более надежным при очень низких скоростях потока, чем имеющиеся в настоящее время технические средства регуляторов потока. Кроме того, более конкретной задачей данного изобретения является выполнение регулятора потока газа с большим динамическим диапазоном или коэффициентом уменьшения для очень низких скоростей потока, чем имею 3 щиеся в настоящее время технические средства для потока. Другой задачей данного изобретения является выполнение регулятора потока газа с очень низкими скоростями течения газа, который имеет достаточную точность, чтобы быть также применимым как для измерения, так и для управления при очень низких скоростях течения газа. Еще одной конкретной задачей данного изобретения является выполнение очень точного регулятора потока для управления очень низкими скоростями течения редких газов, типа фтора и других галогенов, и химически очень активных или коррозионных газов. Дополнительные задачи, преимущества и новые признаки изобретения будут изложены частично в последующем описании, а частично они станут очевидными специалистам в данной области техники после исследования последующего описания или могут быть изучены при практическом применении изобретения. Задачи и преимущества могут быть реализованы и достигнуты посредством признаков прилагаемой формулы изобретения. Для достижения упомянутых выше и других задач и в соответствии с назначениями настоящего изобретения, воплощенными и широко описанными здесь, регулятор микромассового расхода по настоящему изобретению может содержать дросселируемый ограничитель потока со звуковой скоростью с колебательным клапаном для повторяемых открытий и закрытий ограничителя потока в последовательности с временной модуляцией для установления или изменения массового расхода газа посредством дросселируемого ограничителя потока со звуковой скоростью за некоторый период времени до величины примерно между отсутствием потока и максимальным массовым расходом. Биморфный пьезоэлектрический исполнительный механизм покрывают диэлектрическим слоем и затем инкапсулируют в покрытии из нержавеющей стали или другого металла. Элемент закрытия на исполнительном механизме точно совмещен с седлом клапана посредством приведения в действие исполнительного механизма для форсирования элемента закрытия в обмазке связующего вещества против седла клапана до отверждения связующего вещества. Для достижения упомянутых выше и других задач и в соответствии с воплощенными и широко описанными здесь назначениями настоящего изобретения, способ по данному изобретению включает этапы последовательного запуска и остановки дросселируемого со звуковой скоростью потока текучей среды через ограничитель потока колебательным способом с временной модуляцией,чтобы обеспечить рабочий цикл клапану, который представляет собой отношение времени 4 открытого состояния к общему времени, где общее время составляет сумму открытого и закрытого времени. Прилагаемые чертежи, которые включены в описание и образуют его часть, поясняют предпочтительные варианты осуществления настоящего изобретения и вместе с описанием служат для пояснения принципов изобретения. Фиг. 1 представляет изометрический вид регулятора микромассового расхода по настоящему изобретению с вырезанной частью корпуса клапана, чтобы показать внутри исполнительный механизм клапана, седло клапана, сопло со звуковой скоростью потока и другие элементы регулятора; фиг. 2 - вид спереди в вертикальной проекции показанного на фиг. 1 варианта осуществления регулятора микромассового расхода с вырезанной частью корпуса, чтобы показать элементы, расположенные под корпусом; фиг. 3 - вид сзади в вертикальной проекции показанного на фиг. 1 варианта осуществления регулятора микромассового расхода; фиг. 4 - вид в поперечном разрезе регулятора микромассового расхода, сделанном по стрелкам 4-4 на фиг. 3; фиг. 5 является графическим представлением примерного сигнала напряжения и рабочего цикла с временной модуляцией клапана, согласованного с соответствующим графическим представлением колеблющихся дискретных положений клапана; фиг. 6 представляет увеличенный схематический вид в вертикальном разрезе слоистых изгибаемых элементов исполнительного механизма клапана, подсоединенных последовательно к схеме приводного устройства, иллюстрирующий способ создания открывающих клапан изгибающих моментов; фиг. 7 - увеличенный схематический вид изгибаемых элементов возбудителя клапана,подобный фиг. 6, но иллюстрирующий способ создания закрывающих клапан изгибающих моментов; фиг. 8 - увеличенный схематический вид в вертикальном разрезе элементов слоистого изгибаемого элемента исполнительного механизма клапана, подсоединенных параллельно к схеме приводного устройства, иллюстрирующий способ создания открывающих клапан изгибающих моментов; фиг. 9 - увеличенный схематический вид элементов исполнительного механизма клапана,подобный фиг. 8, но иллюстрирующий способ создания закрывающих клапан изгибающих моментов; фиг. 10 - увеличенный вид в поперечном разрезе крышки клапана, седла клапана и отверстия для потока со звуковой скоростью показанного на фиг. 1 регулятора микромассового 5 расхода, который также можно видеть менее подробно на фиг. 4; фиг 11 - еще более увеличенный вид в поперечном разрезе крышки клапана, седла клапана и отверстия для потока со звуковой скоростью при их использовании на промежуточной стадии изготовления для подгонки и установки крышки клапана к седлу клапана; фиг 12 - функциональную блок-схему примерной схемы управления для показанного на фиг. 1-10 регулятора; фиг. 13 - увеличенный вид в поперечном разрезе, аналогичный фиг. 11, но с соплом со звуковой скоростью потока вместо отверстия для потока со звуковой скоростью; фиг. 14 - вид в поперечном разрезе, аналогичный фиг. 4, но показывающий исполнительный механизм альтернативного варианта осуществления, содержащий множество сложенных стопкой пьезоэлектрических пластин; фиг. 15 - вид в поперечном разрезе исполнительного механизма другого альтернативного варианта осуществления, содержащего магнитострикционный стержень; и фиг. 16 - вид в поперечном разрезе исполнительного механизма еще одного альтернативного варианта осуществления, содержащего соленоид. Наилучший способ осуществления изобретения Устройство регулятора 10 микромассового расхода, согласно настоящему изобретению,применяемого для управления и измерения очень маленьких потоков газа при очень низких давлениях, показано на фиг. 1 с вырезанной частью корпуса устройства регулятора потока,чтобы показать клапан, седло клапана, отверстие для потока со звуковой скоростью и другие элементы регулятора, как будет описано более подробно ниже. Однако для общего представления, газ от источника подачи (непоказанного) проходит в регулятор 10 через впускной соединитель 12, как показано стрелкой 14, во впускную камеру 24 давления. Из впускной камеры 24 давления газ проходит через регулирующий клапан 26 в отверстие 28, где он дросселируется со звуковой скоростью перед выходом через выпускной соединитель 34, как показано стрелкой 36. Когда газовый поток через отверстие 28 дросселируется со звуковой скоростью, массовый расход m газа прямо пропорционален отношению давления P1 во впускной камере 24 давлению к корню квадратному температуры T1 газа. В частности, массовый расход m газа можно определить следующим уравнением 6 где P1 - абсолютное давление во впускной камере 24 давления; С - поправочный множитель, который зависит от типа газа; А - площадь поперечного сечения отверстия 28; иT1 - абсолютная температура (по Кельвину) газа во впускной камере 24 давления. Поскольку площадь А отверстия постоянная и может быть определена простым измерением диаметра D отверстия и геометрическим вычислением (А = D2/4), а поправочный множитель С можно определить эмпирически для любого конкретного газа, необходимыми для вычисления массового расхода m газа, согласно приведенному выше уравнению (1), являются только измерения в динамическом режиме давления P1 впускной камеры давления и температуры T1, которые представляют собой относительно простые измерения, проводимые на основании реального времени, как известно специалистам в данной области техники. Следовательно, довольно понятным оказывается определение мгновенного массового расхода m газа,проходящего через отверстие 28 дросселируемого со звуковой скоростью потока в любой момент времени, согласно уравнению (1). Однако существенным признаком данного изобретения является клапан 26 с временной модуляцией в сочетании с отверстием 28 дросселируемого со звуковой скоростью потока для управления массовым расходом несколько меньшим, чем дросселируемый поток со звуковой скоростью за полный рабочий цикл. В частности, чередующееся закрытие и открытие клапана 26 модулируется по времени для создания рабочего цикла клапана, который несколько меньше, чем при нахождении все время в открытом состоянии (значение максимального потока), и несколько больше, чем при нахождении все время в закрытом состоянии (значение минимального потока). Следовательно, клапан 26 с временной модуляцией может управлять эффективной скоростью потока m с любой требуемой скоростью между максимальным значением mмакс и минимальным значением mмин для любых давления Р 1 и температуры T1 впускной камеры давления, устанавливая временную модуляцию или рабочий цикл клапана 26, как будет описано более подробно ниже. На фиг. 4, а также на фиг. 1-3 показан предпочтительный вариант осуществления клапана 26, включающий удлиненный слоистый изгибаемый исполнительный механизм 40 клапана, который сгибается вперед, как показано пунктирной линией 40', когда подают напряжение одной полярности, и который сгибается назад, как показано пунктирной линией 40", когда подают напряжение противоположной полярности, как будет объяснено более подробно ниже. 7 Следовательно, при чередовании напряжения между одной полярностью и противоположной полярностью периферический конец 42 удлиненного исполнительного механизма 40 колеблется назад и вперед, как показано направленной в две стороны стрелкой 44. Когда исполнительный механизм 40 изгибается к переднему или закрытому положению 40', элемент закрытия 46 на исполнительном механизме 40, примыкающий к периферическому концу 44, закрывает отверстие 28, предотвращая прохождение газа через отверстие 28, таким образом закрывая клапан 26. С другой стороны, когда исполнительный механизм 40 изгибается к заднему или открытому положению 40", элемент 46 закрытия перемещается от отверстия 28 клапана, таким образом открывая клапан 26 и обеспечивая прохождение газа через отверстие 28. Открытое положение 40" оказывается достаточно открытым, чтобы поток газа, входящий в отверстие 28, не задерживался или дросселировался между элементом 46 закрытия и седлом 70 клапана перед достижением отверстия 28, и чтобы эффективное давление в отверстии 28 было по существу полным нагнетаемым давлением P1. Когда клапан 26 открыт и имеется существенный перепад между давлением P1 впускной камеры 24 давления перед отверстием 28 и давлением Р 2 выпускного канала ниже отверстия 28,потоку требуется только порядка микросекунды(1 мкс) для достижения дросселирумого со звуковой скоростью состояния потока в отверстии 28. Следовательно, исполнительный механизм 40 может работать и предпочтительно работает дискретным образом, быстро переключаясь поочередно из закрытого положения 40' в открытое положение 40" и из открытого положения 40" в закрытое положение 40'. Как упоминалось выше, исполнительный механизм 40 клапана можно приводить в изогнутое назад состояние в открытое положение 40", прикладывая напряжение противоположной или второй полярности, и его можно приводить в закрытое положение 40', прикладывая напряжение первой полярности с помощью схемы 50 приводного устройства исполнительного механизма, которая показана на фиг. 10 и будет описана более подробно ниже. Следовательно, временем задержки исполнительного механизма 40 клапана либо в закрытом положении 40', либо в открытом положении 40" можно управлять посредством модулирования длительности задержки напряжения на исполнительном механизме 40 клапана с первой полярностью и длительности задержки напряжения со второй полярностью соответственно в каждом закрытом/открытом цикле колебания. Например, как иллюстрируется на фиг. 5, если напряжение при временной модуляции задерживается во второй полярности в течение 25% времени t цикла (т.е. 8 0,25t), а в первой полярности - в течение остальных 75% времени t цикла (т.е. 0,75t), исполнительный механизм 40 клапана будет в открытом положении 40" в течение 25% времени t в закрытом положении 40' в течение 75% времени. Следовательно, в этом примере клапан 26 имеет рабочий цикл 0,25, где рабочий цикл определяется как отношение времени открытого положения к общему времени. Поскольку, как упоминалось выше, переход от фактически отсутствующего потока в закрытом положении 40' к потоку со звуковой скоростью в открытом положении 40" является фактически мгновенным, требующим лишь приблизительно от одной до пяти микросекунд (1-5 мкс), который является пренебрежительно малым для практических целей, реальный массовый расход m оказывается равным массовому расходу m отверстия 28 со звуковой скоростью потока согласно приведенному выше уравнению (1), умноженному на рабочий цикл, т.е.m = mРабочий цикл (2). Если, например, массовый расход m через отверстие 28 для конкретного газа с конкретными измеренными давлением P1 и температурой T1 впускной камеры давления, рассчитанный согласно уравнению (1), составляет десять стандартных кубических сантиметров за минуту(10 сксм), а клапан 26 модулируется по времени так, что имеет рабочий цикл 0,25, то фактический или эффективный массовый расход m согласно приведенной выше формуле (2) составляетm = 10 сксм 0,25 = 2,5 сксм. Конечно, для одного и того же газа, давления P1 и температуры T1 впускной камеры давления путем изменения рабочего цикла клапана между нулем и единицей можно получить линейное изменение эффективного массового расхода m, в этом примере между 0 и 10 сксм. Кроме того, если по некоторым причинам давление P1 или температуру T1 газа следует изменить, чтобы вызвать изменение массового расхода m через отверстие 28 со звуковой скоростью потока согласно приведенному выше уравнению (1), то рабочий цикл можно изменять в достаточной степени для того, чтобы компенсировать такое изменение массового расхода m для сохранения требуемого эффективного массового расхода m. Например, если давление P1 и/или температуру T1 впускной камеры давления в приведенном выше примере следует изменить достаточно для того, чтобы обеспечить массовый расход m через отверстие 28 со звуковой скоростью потока согласно уравнению (1) равным 12 сксм вместо 10 сксм, и необходимо сохранить установленный прежде эффективный массовый расход m = 2,5 сксм,модуляцию напряжения по времени можно изменить для достижения рабочего цикла, состав 9 ляющего 0,208, чтобы сохранить эффективный массовый расход m равным 2,5 сксм. Следовательно, регулятор 10 с временной модуляцией согласно данному изобретению может обеспечивать очень чувствительное и очень точное управление массовым расходом газов, текущих с очень низкими скоростями потока. Несомненно, для модуляции открытия и закрытия отверстия 26 со звуковой скоростью потока существует ряд исполнительных механизмов и приводных механизмов, и некоторые их примеры будут описаны ниже, но предпочтительным вариантом осуществления средства закрытия клапана является слоистый исполнительный пьезоэлектрический механизм 40, показанный на фиг. 1 и 4. Более подробно слоистый исполнительный пьезоэлектрический механизм 40 показан на фиг. 6 и 7. Исполнительный пьезоэлектрический механизм 40 содержит два удлиненных пьезоэлектрических изгибаемых элемента 52, 54, изготовленных слоями вместе с токопроводящим материалом 56, например, медью, алюминием или другим металлом, проложенным между двумя пьезоэлектрическими изгибаемыми элементами 52, 54. Пьезоэлектрические изгибаемые элементы имеют характеристику расширения или сжатия при прикладывании напряжения. В иллюстрируемом на фиг. 6 и 7 исполнительном механизме 40 пьезоэлектрический изгибаемый элемент 52 имеет характеристику сжатия в ответ на прикладываемое положительное напряжение в первой полярности, как показано сжимающими стрелками 58, в то время как пьезоэлектрический изгибаемый элемент 54 имеет характеристику расширения в ответ на прикладываемое напряжение первой полярности, как иллюстрируется расширяющей стрелкой 60. Результат такого положительного напряжения, как показано на фиг. 6, состоит в том, что исполнительный механизм 40 имеет тенденцию закручиваться вперед или изгибаться к закрытому положению 40' клапана. Однако при изменении полярности напряжения на противоположную для приложения напряжения в противоположной или второй полярности, как показано на фиг. 7, возникает противоположное действие,при котором пьезоэлектрический изгибаемый элемент 52 расширяется, как показано расширяющей стрелкой 62, в то время как пьезоэлектрический изгибаемый элемент 54 сжимается,как показано сжимающей стрелкой 64. Результат такого противоположного напряжения или напряжения второй полярности, как показано на фиг. 7, состоит в том, что исполнительный механизм 40 имеет тенденцию закручиваться назад или изгибаться к открытому положению 40" клапана. Таким образом, указанные два пьезоэлектрических элемента 52, 54 действуют вместе как изгибаемое устройство, которое приво 001508 10 дится в движение электрически для обеспечения колебания между закрытым положением клапана 40' и открытым положением клапана 40". В примерной принципиальной схеме 50 управления напряжение обеспечивает источник 51 напряжения предпочтительно постоянного тока. Отрицательную клемму источника 51 напряжения можно подсоединить к пьезоэлектрическому изгибаемому элементу 52 через первую отрицательную ветвь 55 схемы, подсоединенную к первому выводу 53 выключателем 61 и, в качестве альтернативы, к пьезоэлектрическому изгибаемому элементу 54 через вторую отрицательную ветвь 57 схемы, подсоединенную ко второму выводу 59 выключателем 71. В то же время, положительную клемму источника 51 напряжения можно подсоединять к пьезоэлектрическому изгибаемому элементу 54 через первую положительную ветвь 63 схемы, подсоединенную ко второму выводу 59 выключателем 65 и, в качестве альтернативы, к пьезоэлектрическому изгибаемому элементу 52 через вторую положительную ветвь 67 схемы, подсоединенную к первому выводу 53 выключателем 69. Следовательно, чтобы согнуть исполнительный механизм 40 к закрытому положению 40', как показано на фиг. 6, можно подать первую полярность посредством замыкания выключателей 69, 71 и размыкания выключателей 61, 65. Затем, чтобы согнуть исполнительный механизм 40 к открытому положению 40", как показано на фиг. 7, выключатели 69, 71 можно разомкнуть, а выключатели 61, 65 замкнуть. Выключателями 61, 65, 69, 71 могут быть транзисторы, реле или любой другой обычный выключатель, как известно специалистам в данной области техники,и ими можно управлять компьютером или CPU(микропроцессор с интерфейсом), включая время задержки в разомкнутом и замкнутом положениях, для достижения необходимых рабочих циклов и эффективного массового расхода m,как описано выше. Такой компьютер или CPU 174 схематически показан на функциональной блок-схеме на фиг. 12, которая будет описана ниже. Между пьезоэлектрическими изгибаемыми элементами 52, 54 размещен металлический материал 56 проводника для распределения прикладываемых напряжений по всей длине пьезоэлектрических изгибаемых элементов 52,54, которые обычно являются полупроводниковыми материалами. Удлиненные пьезоэлектрические изгибаемые элементы, подходящие для этого применения исполнительного механизма клапана, можно получить у фирмы Морган Матракс, г. Цинциннати, штат Огайо, товарный знак Bimorph. Электрическое соединение, схематично иллюстрируемое на фиг. 6 и 7, последовательно подсоединяет пьезоэлектрические изгибаемые 11 элементы 52, 54 к схеме 50 приводного устройства. В качестве альтернативы, пьезоэлектрические изгибаемые элементы 52, 54 к схеме 50' приводного устройства можно подсоединять параллельно, как показано на фиг. 8 и 9, для достижения того же самого полного эффекта с меньшим напряжением, но большим током,требуемыми от схемы 50' приводного устройства. При таком параллельном соединении, в дополнение к первому выводу 53, подсоединенному к пьезоэлектрическому изгибаемому элементу 52, и второму выводу 59, подсоединенному к пьезоэлектрическому изгибаемому элементу 54, имеется третий вывод 73, подсоединенный к металлическому слою 56. Отрицательную клемму источника 51 напряжения можно подсоединять: (i) либо и к первому, и ко второму выводам 53, 59 вместе через параллельную схему 75 выключателем 77; (ii) либо к третьему выводу через параллельную схему 79 выключателем 81. В то же время, положительную клемму источника 51 напряжения можно подсоединять: (i) либо к третьему выводу через параллельную схему 83 выключателем 85; (ii) либо и к первому, и ко второму выводам 53, 59 вместе через параллельную схему 87 выключателем 89. Следовательно, чтобы согнуть исполнительный механизм 40 к закрытому положению 40', как показано на фиг. 8, первую полярность можно подать посредством замыкания выключателей 77, 85 и размыкания выключателей 81, 89. И наоборот, чтобы согнуть исполнительный механизм 40 к открытому положению 40", как показано на фиг. 9, противоположную или вторую полярность можно подать замыканием выключателей 81, 89 и размыканием выключателей 77, 85. И снова этими выключателями можно управлять посредством ЦП 174, как схематически показано на фиг. 12. Предпочтительно, чтобы исполнительный механизм 40 приводился из открытого положения 40" в закрытое положение 40' с помощью напряжения, которое мгновенно изменяется от одной полярности на противоположную полярность. Следовательно, напряжение сигнала приводного устройства предпочтительно осуществляет переход от одной полярности к противоположной полярности фактически мгновенно, как показано вертикальным участком 74 цикла сигнала приводного устройства на фиг. 5, для достижения почти мгновенного перехода от открытого положения 40" клапана к закрытому положению 40' клапана. Как описано выше, элемент 68 закрытия клапана должен отойти от седла клапана на столько, чтобы не допустить дросселирования потока газа между элементом закрытия 68 и седлом 70 клапана; прежде чем газ достигнет отверстия 28, которое для низких давлений и скоростей потока, для которых используется регулятор 10, может быть, например, 0,066. 12 Такое открытие или перемещение элемента закрытия 68 клапана может быть выполнено почти мгновенно вертикальным участком 80 сигнала перехода напряжения на фиг. 5. Для уравнения (1) требуется точно определить массовый расход m дросселируемого потока со звуковой скоростью газа через отверстие 28, как описано выше. Чтобы поддерживать дросселируемый поток со звуковой скоростью через отверстия, такие как отверстия 28, показанные на фиг. 1, 4 и 10, необходимо поддерживать два условия. Во-первых, отношение застойного давления Р 1 выше отверстия к застойному давлению P2 ниже отверстия должно быть в диапазоне, по меньшей мере, приблизительно 1,4-1,5 (P1/P21,4 - 1,5) и предпочтительно сохраняться равным, по меньшей мере, 2,0 (P1/P22,0), чтобы гарантировать обеспечение условия дросселируемого потока со звуковой скоростью. Во-вторых, средняя длинасвободного пробега газовых молекул должна быть меньше диаметра отверстия 28. При использовании газообразного гелия, например, при давлении, достигающем 399,97 Па, средняя длинасвободного пробега равна приблизительно 0,0508 мм. Следовательно, относительно большое отверстие 28 с размером, по меньшей мере, 0,0508 мм и предпочтительно приблизительно 0,1270 мм или более является весьма вероятным для давлений в диапазоне от приблизительно 20,69103 Па абсолютного давления до 399,97 Па или меньше. Конечно, возможно функционирование при более высоком давлении P1 впускной камеры давления, и согласно уравнению (1) можно обеспечить больший максимальный массовый расходm. Однако такие более высокие давления и скорости потока снижают возможность достижения тонкого и очень точного управления очень низкими массовыми расходами. Следовательно для более точного регулирования расхода при низких скоростях потока меньше, чем 100 сксм, и предпочтительно даже при очень низких скоростях в диапазоне, например, 0,1-10 сксм, при таких низких давлениях P1 впускной камеры давления, как 6,865103 Па - 20,69103 Па абсолютного давления или меньше, желательно работать с регулятором 10 по настоящему изобретению. Такие низкие рабочие давления P1 впускной камеры давления являются весьма возможными в применениях подводимого газа к полупроводниковым печам для реакционной плавки, которые обычно работают при таких пониженных давлениях, так что сохранение отношения P1/P2, равным, по меньшей мере, 2,0,как объяснялось выше, не представляет проблему. В то же время, возможность использования относительно большого отверстия 28 диаметром, например, приблизительно 0,1270 мм обеспечивает дополнительное преимущество, состоящее в том, что достаточно большое отвер 13 стие позволяет избежать большинства проблем засорения, с которыми сталкиваются в современной технике с ограниченным отверстием с регуляторами массового расхода типа обходной обратной связи. Такие низкие рабочие давления P1 камеры давления, например, 20,69103 Па абсолютного давления или меньше также имеют преимущество минимизирования скорости утечки через клапан 26, когда элемент 46 закрытия клапана расположен на седле 70 клапана. Однако другая особенность данного изобретения заключается в конструкции и способе изготовления элемента 46 закрытия клапана. В частности, как лучше всего видно на фиг. 10, наряду с фиг. 1 и 4, металлический слой 56 размещен между двумя удлиненными пьезоэлектрическими изгибаемыми устройствами 52, 54 и закреплен связующим веществом (непоказанным), типа эпоксидной смолы для образования пьезоэлектрических изгибаемых элементов. В примерном варианте осуществления каждое из устройств 52, 54 имеет толщину приблизительно 0,1905 мм. Тонкий слой металла 72, например никеля, предпочтительно, но не обязательно, наносят на поверхности пьезоэлектрических устройств 52, 54 для обеспечения некоторой защиты от коррозии и,более значительно, соизмеримой подложки для следующего слоя 78. Металлический слой 72 можно наносить физическим осаждением из газовой фазы (ФОГФ) или любым другим подходящим способом металлизации. Кроме того, значительная часть данного изобретения представляет собой комбинацию диэлектрического слоя 78 и стойкого к коррозии металлического слоя 80, инкапсулирующего все пьезоэлектрическое устройство для защиты его от химически очень активных или коррозионных газов, например фтора, или других галогенов или коррозионных газов, которые можно измерять или которыми можно управлять с помощью регулятора 10 микромассового расхода по данному изобретению. Диэлектрический слой 78 обеспечивает электрическую изоляцию между внешним защитным металлическим слоем 80 и пьезоэлектрическими устройствами 52,54 и центральной металлической пластиной или полосой 56, так что описанные выше электрические схемы 50, 50' не закорачиваются. Диэлектрический слой 78 предпочтительно является прочным и устойчивым, но также гибким и не становится хрупким, так что обеспечивает хорошую подложку для внешнего защитного металлического слоя 80, однако, не оказывает значительной помехи для вибрации или колебания изгибаемого элемента или исполнительного механизма 40. Предпочтительным материалом для диэлектрического слоя является пластмассовое изделие, известное как Parylene, которое можно наносить тонким слоем, толщиной 14 предпочтительно менее 0,0254 мм напылением. Для слоя 78 также могут быть подходящими другие диэлектрические материалы, типа оксида алюминия, нанесенного физическим осаждением из газовой фазы или химическим осаждением из газовой фазы. Предпочтительным металлом для внешнего слоя покрытия 80 является нержавеющая сталь марки SS316, поскольку это общепринятый, стандартный в промышленности материал для использования с такими редкими, химически очень активными газами, как фтор, другие галогены и другие химически очень активные или коррозионные газы. Слой из нержавеющей стали марки SS316 предпочтительно также выполняют достаточно тонким, чтобы не добавлять чрезмерную массу исполнительному механизму 40 или не создавать значительную помеху для его колебательного или вибрирующего действия. Толщина меньше приблизительно 0,0254 мм обеспечивает необходимую защиту от химически очень активных газов, в то же время отвечая этим критериям, и ее можно наносить напылением, физическим, химическим осаждением или любым другим подходящим процессом. Однако предпочтительно, но не необходимо, монтировать элемент 46 закрытия клапана прилежащим к периферическому концу 42 исполнительного механизма 40 перед нанесением слоя 80 покрытия, чтобы слой 80 покрытия мог также защищать связующее вещество 86, используемое для крепления элемента 46 закрытия. Седло 70 клапана имеет поверхность закраины вокруг устья отверстия 28. Элемент 46 закрытия клапана предпочтительно является металлическим диском или пластиной, например, из нержавеющей стали, приклеенной к исполнительному механизму 40 подходящим связующим веществом 86 типа эпоксидной смолы. И диск 46 закрытия, и седло 70 клапана предпочтительно отполированы до ровной зеркальной полировки. Затем связующее вещество 86,предпочтительно эпоксидную смолу, наносят поверх диэлектрического слоя 78 в местоположении, где должен быть установлен элемент 46 закрытия. После этого отполированный диск элемента 46 закрытия помещают на неотвержденном связующем веществе 86. До сушки или отверждения связующего вещества 86 исполнительный механизм 40 и элемент 46 закрытия предпочтительно устанавливают в кожухе 16 в точном местоположении, в котором они будут работать, чтобы полированная поверхность 114 диска 46 элемента закрытия могла точно совпадать с полированной поверхностью седла 70 клапана. Следовательно, при монтировании исполнительного механизма 40 в местоположении, показанном на фиг. 4, напряжение стационарной полярности (не прерываемой или не ко 15 лебательной) подается посредством схемы 50 или 50', как описано выше, чтобы привести биморфный исполнительный механизм 40 в закрытое положение 40'. Как лучше видно на фиг. 11, поддержание этого напряжения и полярности жестко прижимают и удерживают диск 46 элемента закрытия на седле 70 клапана с усилием, показанным стрелкой 30. Такое прижимание элемента 46 закрытия клапана к седлу 70 клапана с достаточным усилием, чтобы согласовать ориентацию полированной поверхности 114 на элементе 46 закрытия с соединяемой полированной поверхностью 70 седла клапана вокруг отверстия 28, посредством сдавливания неотвержденного связующего вещества 86 и удерживания усилия 30 до тех пор, пока связующее вещество 86 не высохнет или затвердеет, имеет преимущество точной подгонки и удержания поверхности 114 в точной подгонке к седлу 70 клапана для весьма эффективного уплотнения,когда исполнительный механизм 40 находится в закрытом положении 40'. Например, как показано на фиг. 11, когда исполнительный механизм 40 расположен так, что полированная поверхность 114 точно совпадает с поверхностью 70 седла клапана, продольная ось 88 может оказаться не параллельной плоскости 91 полированной поверхности 70 седла клапана. Следовательно, угол 93 между продольной осью 88 и продольной осью 95 отверстия 28 может быть больше или меньше 90, и/или угол 97 между плоскостью 91 и исполнительным механизмом 40 может быть больше 0. Однако под действием закрывающего усилия 30 исполнительного механизма 40 неотвержденное связующее вещество 86 сжимается, чтобы привести в соответствие такую несоосность, как показано на фиг. 11,где толщина 99 связующего вещества 86 у основания элемента 46 закрытия меньше, чем толщина 101 наверху элемента 46 закрытия. Такие отклонения также могут быть в боковом или любом другом направлении. Когда связующее вещество 86 затвердеет, ориентация и пространственная взаимосвязь между элементом 46 закрытия и исполнительным механизмом 40 останутся фиксированными. На фиг. 4 показан штифт 103 в корпусе 20 и сопрягающее отверстие 105 в заглушке 107 монтажа исполнительного механизма, обеспечивающие одинаковую точную ориентацию исполнительного механизма 40 относительно корпуса 20, и таким образом, относительно седла 70 клапана и отверстия 28 всегда, когда исполнительный механизм устанавливают в корпусе 20. Следовательно после отверждения связующего вещества 86 исполнительный механизм 40 можно удалить из корпуса 20 для инкапсулирования исполнительного механизма 40 с помощью слоя 80 покрытия из нержавеющей стали, как описано выше. 16 Регулятор 10 можно сконструировать с любым подходящим кожухом, хотя на фиг. 1-4 показан один подходящий вариант осуществления. Впускная камера 24 давления проходит через секцию 90 основного корпуса, и секция 90 основного корпуса также имеет конструкцию для резьбовых соединений впускного фитинга 12, выпускного фитинга 34 и для установки исполнительного механизма 40 клапана. Исполнительный механизм 40 клапана представляет собой консоль, установленную ее ближайшим концом 100 в держателе 112, вставленном в заглушку 107. Электрическое соединение исполнительного механизма 40 с электронной панелью 102 процессора выполнено соединителем 116. Отверстие 28 можно выполнять многими способами, хотя предпочтительная конструкция показана на фиг. 1, 4 и 10 в форме торцевой стенки 124 с отверстием 28, проходящим через торцевую стенку 124. Измерения давлений Р 1 и Р 2 можно выполнять с помощью обычных манометров. Такой обычный манометр 194 для измерения давленияP1 на входе схематически показан на фиг. 4 установленным через канал 106 соединителя внутреннего давления в секции 90 основного тела и подсоединенным проводами 130 к панели 116 процессора. Другой обычный манометр (непоказанный) можно соединить с выпускным фитингом 34 Т-образным соединителем (непоказанным) или другим обычным способом для измерения давления P2 ниже по потоку. Поскольку уравнение (1) для массового расхода m в отверстии для дросселируемого потока со звуковой скоростью требует абсолютного давленияP1, а не манометрического давления, необходим другой внешний манометр (непоказанный), который может использоваться для измерения атмосферного давления, которое можно алгебраически добавлять к манометрическому давлению, определяемому датчиком 194 давления,чтобы получить абсолютное давление P1, как должно быть понятно специалистам в данной области техники, или абсолютное давление P1 может быть измерено другими способами, известными и понятными для специалистов в данной области. Уравнение (1) также включает температуру газа для точного определения массового расхода m через отверстие 28 для дросселируемого потока со звуковой скоростью. Если газ хранится при комнатной температуре, для вычисления массового расхода m можно принять комнатную температуру. Однако для более точных вычислений массового расхода m в секции 90 корпуса можно установить узел 154 термопары или любой другой обычный измеряющий температуру датчик, чтобы он проходил во впускную камеру 24 давления, как показано на фиг. 3-4. 17 Регулятор 10, в дополнение к наличию способности очень точно и надежно управлять эффективным массовым расходом m при очень низких скоростях течения газа и при очень низких давлениях, как описано выше, также можно использовать для измерения, то есть измерения величин М массы газа, который протекает через регулятор 10 за какой-то период времени. Если эффективный массовый расход m является постоянным за весь рассматриваемый период времени, масса М газа просто представляет собой эффективный массовый расход m, умноженный на рассматриваемый период времени. Если эффективный массовый расход m изменяется в течение рассматриваемого периода времени,массу М можно определить суммированием масс за многочисленные маленькие приращения времени в течение рассматриваемого периода времени или интегрированием по рассматриваемому периоду времени, как должно быть понятно специалистам в данной области техники. На фиг. 13 показан несколько модифицированный вариант регулятора микромассового расхода для иллюстрации использования сопла 156 со звуковой скоростью потока вместо отверстия со звуковой скоростью потока. Как должно быть понятно специалистам в данной области техники, сопло со звуковой скоростью потока имеет входной участок 158, который сужается к горловине 160 минимальной площади поперечного сечения, и затем расширяющийся выходной участок 162. Преимущество сопла над отверстием состоит в том, что энергия восстанавливается в расширяющемся выходном участке 162, так что отношение давления P1 на входе к давлению P2 на выходе, необходимое для сохранения дросселируемого потока со звуковой скоростью через горловину 160 может быть меньше, чем необходимо для сохранения дросселируемого потока со звуковой скоростью в отверстии. Например, отношение P1/P21,151,20 обычно является достаточным для сохранения дросселируемого потока со звуковой скоростью в сопле. Следовательно, может быть более желательным использовать сопло 156, а не отверстие 28 в ситуациях, когда давление P2 на выходе следует поддерживать ближе к имеющемуся давлению P1 на входе, или в применениях, где необходимо сохранение энергии. В других отношениях модифицированный регулятор на фиг. 13 имеет по существу такие же компоненты и работает по существу таким же способом, как показанный на фиг. 1-11 и описанный выше регулятор 10. Пример, но не обязательный, функциональной блок-схемы, соответствующей электронной схемы для воплощения регулятора 10 микромассового расхода, согласно настоящему изобретению, показан на фиг. 12. По существу, 001508 18 требуемое значение эффективного массового расхода m можно обеспечивать с помощью аналогового сигнала типа напряжения величиной между 0-10 В или тока величиной между 420 мА, как показано в блоке 170. Этот установленный сигнал в блоке 172 усиливается и преобразуется из аналогового в цифровой формат и подается в микропроцессор или центральный процессор 174. Аналоговые сигналы напряжения из манометра 194 усиливаются и преобразуются из аналогового в цифровой формат в блоке 176 и подаются в центральный процессор 174. Как описано выше, если манометр 194 обеспечивает измерения манометрического давления, а не абсолютного давления P1, сигналы атмосферного давления от обычного измерительного датчика 178 атмосферного давления могут быть усилены и преобразованы из аналогового в цифровой формат в блоке 180 для подачи в центральный процессор 174 для использования при преобразовании таких измерений манометрического давления манометра 194 в абсолютное давление P1 впускной камеры давления. Если используется температура T1 газа,поступающая от термопары 154, как описано выше, сигналы T1 усиливаются и преобразуются в блоке 182 из аналогового в цифровой формат для подачи в центральный процессор 174. Иначе, в центральном процессоре 174 можно запрограммировать принимаемую комнатную температуру или любую другую требуемую температурную поправку. Как описано выше, для определения массового расхода m с помощью уравнения (1) также требуется площадь поперечного сечения отверстия 28, которую можно вычислить на основании диаметра отверстия, который можно измерить любым точным штангенциркулем или с помощью другого хорошо известного способа и запрограммировать в центральном процессоре 174. Остающийся поправочный множитель С для ввода в центральный процессор 174, как упоминалось выше, можно определить эмпирическим путем для любого газа или получить другими известными способами. Центральный процессор 174 считывает все описанные выше поступающие сигналы, выполняет соответствующие вычисления и интерпретации для установления рабочего цикла,требуемого для необходимого эффективного массового расхода m, передает сигналы рабочего цикла в приводное устройство 184 исполнительного механизма, которое включает схемы 50, 50' приводного устройства или современные функциональные эквиваленты и передает сигналы фактического эффективного массового расхода m в цифровом формате в блок 188. Сигналы рабочего цикла, создаваемые центральным процессором 174, могут быть по существу цифровыми сигналами включения 19 выключения необходимой временной модуляции для открытого и закрытого положений клапана 26 регулятора, как описано выше. Рабочий цикл, как описано выше, является по существу отношением времени открытого состояния клапана к общему времени (времени открытого плюс времени закрытого состояний) в цикле,который можно определить посредством деления требуемого эффективного массового расхода m на массовый расход m через сопло со звуковой скоростью потока, как определяется из уравнения (1). Таким образом,Рабочий цикл = m/m. Сигнал эффективного массового расходаm, который вырабатывает центральный процессор 174, можно использовать для любого необходимого цифрового или аналогового отображения, управления оборудованием, регистрации, анализа или требуемой другой функции. На фиг. 12 показано, как он проходит через усилитель и цифроаналоговое преобразование в блоке 186 (на чертеже аналого-цифровое преобразование) для получения аналогового выходного сигнала, представляющего эффективный массовый расход m в блоке 188. Как также упоминалось выше, функцию измерения регулятора 10 можно выполнять путем суммирования или интегрирования эффективного массового расхода m по любому требуемому периоду времени. Такую функцию измерения можно было бы обеспечивать центральным процессором 174 или внешней схемой, используя величину m, поступающую из блока 188, как должно быть понятно специалистам в данной области техники. Центральный процессор также можно программировать для обеспечения других функций и описанных выше вычислений, как будет понятно специалистам в данной области техники. Например, центральный процессор 174 можно также программировать для преобразования температурных сигналов из блока 154 в температуру T1 газа по Кельвину, как это необходимо для использования в уравнении (1). Центральный процессор 174, как упоминалось выше,также программируется, чтобы использовать эти и другие входные сигналы для вычисления массового расхода m, определения рабочего цикла и т.п., повторяя вычисления необходимое количество раз и на протяжении всего требуемого времени. Способность регулятора 10 работать при давлениях ниже атмосферного, например, в диапазоне от 1,716103 до 20,69103 Па абсолютного давления снижает до минимума проблемы утечки через клапаны 26, а также позволяет использовать большие отверстия 28, которые обладают меньшей вероятностью засорения, как описывалось выше. Для повышения пропускной способности или добавления более 20 тонких регуляторов скорости потока можно использовать множество параллельно соединенных клапанов 26 дросселируемого потока со звуковой скоростью с временной модуляцией(непоказанных) и, если необходимо, то из одной и той же впускной камеры 24 давления, таким образом используя только один датчик 194 для общего давления P1 впускной камеры давления(в дополнение к датчику атмосферного давления) для использования в уравнении (1) для всего множества используемых отверстий для дросселируемого потока со звуковой скоростью. Кроме того, для точного управления скоростью потока каждый из многочисленных клапанов может иметь отверстие различного размера и(или) работать с различными управляемыми рабочими циклами. Как упоминалось выше, требуется приблизительно 1-5 мкс, чтобы поток в клапане 26 достиг звуковой скорости, и исполнительный механизм 40 может закрывать клапан 26 приблизительно в течение 1 мкс, так что время цикла,равное приблизительно 1 мс, т.е. частота, составляющая приблизительно 1 кГц, для исполнительного механизма 40 является подходящим рабочим диапазоном, хотя очевидно, что нужно избегать работу на резонансной частоте. Также может быть подходящим инкапсулировать исполнительный механизм 40 с помощью другого защитного покрытия 80, например, типа нитрида кремния или другого материала, когда не требуется нержавеющая сталь, чтобы предотвращать загрязнение газа, проходящего через регулятор 10. Можно легко достичь отношения уменьшения 400:1 и, вероятно, выше 1000:1. Регулятор 10 может обеспечить время срабатывания, составляющее, например, 30 мс, и можно добиться даже меньшего времени срабатывания,ограничивая объемы в клапане 26. В пределах возможностей регулятора 10 также находятся повторяемость и линейность измерений управления в диапазоне 0,25%. В варианте осуществления регулятора 10 потока на фиг. 1-4 в корпусе 90 выполнено защитное покрытие 16, чтобы закрыть и защитить электронные компоненты, типа панели 18 электропитания, панели 116 обработки, датчика 194 давления, заглушки 107 установки исполнительного механизма, проводов 130 и т.п. Исполнительный механизм смонтирован во внутренней камере 20 в корпусе 90, которая пересекает впускную камеру 24 давления. Электрический соединитель 22, проходящий через покрытие 16,можно использовать для связи с внешними электронными источниками электроэнергии или выходным оборудованием (непоказанным). Хотя описанный выше биморфный пьезоэлектрический исполнительный механизм 40 является предпочтительным исполнительным механизмом клапана, можно также использо 21 вать и другие исполнительные механизмы. Например, показанный на фиг. 14 вариант осуществления 200 регулятора потока имеет по существу такое же отверстие 28 со звуковой скоростью потока, впускную камеру 24 давления и элемент 46 закрытия клапана, а также большинство других компонентов, являющихся такими же, как в описанном выше варианте осуществления 10. Однако исполнительный механизм 202 клапана совершенно другой. Исполнительный механизм клапана по существу содержит удлиненную тонкую пластинку 204, которая может быть изготовлена из любого упругого материала, типа пружинящей стали, пластмассы, композиционного или аналогичного материала, имеющего структурную память. Пластинку 204 монтируют ближайшим концом 208 в заглушке 206 в корпусе 90, и она проходит через камеру 20 к местоположению рядом с седлом 70 клапана и отверстием 28. Элемент 46 закрытия расположен на периферическом конце 210 пластинки 204. В этом варианте осуществления пластинку монтируют и располагают в заглушке 206 таким образом, что она прижимается к седлу 70 клапана, и когда отжимается от седла 70 клапана благодаря упругой структурной памяти материала, который содержит пластинку 204, она при прекращении усилия упруго пружинит назад для соприкосновения элемента 46 закрытия с седлом 70 клапана. Внешнее усилие для отжатия пластинки 204 от седла 70 клапана обеспечивается осевым приводным устройством 220 исполнительного механизма,действующим на пластинку 204. В одном варианте осуществления осевого исполнительного механизма 220, показанного на фиг. 14, осевой исполнительный механизм 220 содержит множество сложенных стопкой пьезоэлектрических пластин 222, которые расширяются, когда прикладывают напряжение одной полярности, и сжимаются, когда прикладывают напряжение противоположной полярности, как показано стрелкой 224. Пьезоэлектрические пластины 222 предпочтительно, но не обязательно соединены электрически последовательно и сложены стопкой в цилиндре 226 из нержавеющей стали,который расширяется и сжимается вместе с пластинами 222. Цилиндр 226 находится в соприкосновении с пластинкой 204. Следовательно,когда пластины 222 расширяются, они толкают пластинку 204 от седла 70 клапана. Когда пластины 222 сжимаются, память упругой пружинной пластинки 204 вызывает ее отскакивание назад к седлу 70 клапана. Пластинку можно также монтировать на расстоянии от седла клапана, а цилиндр 226 можно прикреплять к пластинке 204, чтобы и толкать пластинку к седлу 70 клапана, и отводить ее от него. Другой вариант осуществления исполнительного механизма 230 показан на фиг. 15, где 22 заделанная одним концом (консольная) пружинная пластинка 204 смещается с элементом 46 закрытия клапана в закрытое положение относительно отверстия 28 и отводится из закрытого положения магнитострикционным стержнем 232. Регулировочным винтом 234 можно устанавливать пределы движения на магнитострикционном стержне 232. Это действие можно реверсировать с помощью пружинной пластинки 204, установленной с элементом 46 закрытия в нормально открытом положении, и магнитострикционным стержнем 232, прикрепленным для подталкивания его в закрытое положение. Еще один примерный исполнительный механизм 240, показанный на фиг. 16, имеет соленоидное устройство, содержащее часть 244 сердечника, притягиваемую катушкой 246 электромагнита. Магнитный диск на конце части 244 сердечника притягивает консольную пружинную пластинку 204 и элемент 46 закрытия от отверстия 28. Для возвращения на место части 244 сердечника при отключении или реверсировании напряжения можно использовать смещающий магнит 248. Этот вариант осуществления 240 также можно делать и использовать с пластинкой 204 и элементом 46 закрытия в нормально открытом положении, а также в нормально закрытом положении. Несомненно, имеется множество других исполнительных механизмов, которые можно использовать для перемещения элемента закрытия к седлу клапана и отверстию и от них, не выходя при этом за рамки объема притязаний данного изобретения. Вышеприведенное описание рассматривается только в качестве пояснения принципов изобретения. Кроме того, поскольку многочисленные модификации и изменения могут возникнуть у специалистов в данной области, то нежелательно ограничивать изобретение показанными и описанными выше точными конструкцией и способом. В соответствии с этим, все подходящие изменения и эквиваленты можно рассматривать входящими в объем притязания изобретения, определяемый нижеприведенной формулой изобретения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Устройство регулятора потока текучей среды, содержащее впускную камеру давления и выпускную камеру давления, разделенные перегородкой, которая имеет отверстие, проходящее между впускной камерой давления и выпускной камерой давления, причем впускная камера давления подсоединена к источнику газа, который поддерживает газ во впускной камере давления под давлением впускной камеры давления, существенно превышающем давление в выпускной камере давления, чтобы вызвать дросселируемый поток со звуковой скоростью 23 газа через отверстие из впускной камеры давления в выпускную камеру давления, клапан, размещенный для открытия и закрытия отверстия,причем клапан включает седло клапана на впускном отверстии и элемент закрытия, который точно совмещен с седлом клапана для обеспечения закрытия впускного отверстия, элемент закрытия размещен на исполнительном механизме, который обеспечивает перемещение элемента закрытия между открытым положением, в котором элемент закрытия не закрывает впускное отверстие, обеспечивая дросселируемый поток со звуковой скоростью газа через отверстие, и закрытым положением, в котором элемент закрытия точно совмещен с седлом клапана и закрывает впускное отверстие, предотвращая дросселируемый поток со звуковой скоростью газа через отверстие, исполнительный механизм, включающий удлиненный рычаг,имеющий первый слой пьезоэлектрического материала, покрытого вторым материалом, причем первый пьезоэлектрический материал способен расширяться больше, чем второй материал, под действием напряжения одной полярности, и способен сжиматься сильнее, чем второй материал, под действием напряжения противоположной полярности, при этом исполнительный механизм инкапсулирован с помощью слоя металлического покрытия, и регулятор, подсоединенный к исполнительному механизму таким образом, что вызывает колебание исполнительного механизма клапана назад и вперед между открытым положением и закрытым положением в цикле с временной модуляцией, который устанавливает эффективный массовый расход текучей среды, проходящей через отверстие между максимальным значением, при котором клапан остается всегда в открытом положении, и минимальным значением, при котором клапан остается всегда в закрытом положении. 2. Устройство по п.1, в котором отверстие включает сужение в виде горловины отверстия. 3. Устройство по п.2, в котором сужение в виде горловины отверстия размещено во впускном отверстии. 4. Устройство по п.2, в котором сужение в виде горловины отверстия размещено в выпускном отверстии. 5. Устройство по п.2, в котором сужение в виде горловины отверстия размещено между впускным отверстием и выпускным отверстием. 6. Устройство по п.1, в котором отверстие включает сопло между впускным отверстием и выпускным отверстием, при этом сопло включает сходящуюся секцию, сведенную на конус радиально внутрь к суженной горловине, и расходящуюся секцию, сведенную на конус радиально наружу от суженной горловины к выпускному отверстию. 24 7. Устройство по п.1, в котором исполнительный механизм включает соленоид. 8. Устройство по п.1, в котором элемент закрытия имеет плоскую поверхность, которая больше седла клапана. 9. Устройство по п.8, в котором элемент закрытия представляет собой диск. 10. Устройство по п.1, в котором вторым материалом является второй пьезоэлектрический материал, который сжимается, когда первый пьезоэлектрический материал расширяется,и расширяется, когда первый пьезоэлектрический материал сжимается. 11. Устройство по п.1, которое включает схему приводного устройства исполнительного механизма, которая вырабатывает сигналы приводного устройства исполнительного механизма переменных напряжений с временной модуляцией противоположных полярностей, соединенную с изгибаемым устройством. 12. Устройство по п.11, которое включает регулятор с временной модуляцией, соединенный со схемой приводного устройства исполнительного механизма, причем схема приводного устройства исполнительного механизма реагирует на регулятор с временной модуляцией таким образом, что вырабатывает положительные напряжения и отрицательные напряжения в рабочих циклах, которые содержат установленные отношения времени, в течение которого клапан находится в открытом положении, к общему времени колебания клапана через полный цикл открытого положения и закрытого положения. 13. Устройство по п.11, в котором регулятор с временной модуляцией регулируется таким же образом, как рабочий цикл. 14. Устройство по п.1, в котором металлическое покрытие выполнено из нержавеющей стали. 15. Устройство по п.1, которое включает диэлектрический слой, расположенный между изгибаемым устройством и слоем металлического покрытия. 16. Устройство по п.15, в котором диэлектрический слой содержит материал Parylene. 17. Устройство по п.16, в котором диэлектрический слой материала Parylene нанесен напылением на изгибаемое устройство. 18. Исполнительный механизм клапана,содержащий изгибаемое устройство, включающее, по меньшей мере, один пьезоэлектрический элемент, при этом изгибаемое устройство инкапсулировано покрываемым материалом,который является более коррозионностойким,чем пьезоэлектрическое устройство. 19. Исполнительный механизм клапана по п.18, в котором покрываемый материал содержит металл. 25 20. Исполнительный механизм клапана по п.19, в котором металлом является нержавеющая сталь. 21. Исполнительный механизм клапана по п.20, в котором металлом является нержавеющая сталь марки SS316. 22. Исполнительный механизм клапана по п.19, который включает диэлектрический материал, размещенный между пьезоэлектрическим изгибаемым устройством и покрываемым материалом. 23. Исполнительный механизм клапана по п.22, в котором диэлектрическим материалом является пластмасса. 24. Исполнительный механизм клапана по п.23, в котором пластмасса наносится напылением на подложку. 25. Исполнительный механизм клапана по п.24, в котором пластмассой являетсяParylene. 26. Исполнительный механизм клапана по п.22, в котором диэлектрический материал содержит окись алюминия. 27. Исполнительный механизм клапана по п.22, который включает материал подложки,размещенный между пьезоэлектрическим изгибаемым устройством и диэлектрическим материалом. 28. Исполнительный механизм клапана по п.27, в котором материал подложки содержит металл. 29. Исполнительный механизм клапана по п.28, в котором металл материала подложки включает никель. 30. Пьезоэлектрический исполнительный механизм для использования в коррозионной среде, содержащий, по меньшей мере, одно пьезоэлектрическое устройство, металлический слой подложки, нанесенный на пьезоэлектрическое устройство, слой диэлектрического материала, нанесенный на металлический слой подложки, и покрываемый металл, нанесенный на диэлектрический слой. 31. Пьезоэлектрический исполнительный механизм по п.30, в котором металлический слой подложки включает никель. 32. Пьезоэлектрический исполнительный механизм по п.30, в котором диэлектрический слой содержит пластмассу. 33. Пьезоэлектрический исполнительный механизм по п.32, в котором пластмасса наносится напылением на слой подложки. 34. Пьезоэлектрический исполнительный механизм по п.33, в котором диэлектрический слой имеет толщину менее чем 0,0254 мм. 35. Пьезоэлектрический исполнительный механизм по п.33, в котором пластмассой является Parylene. 26 36. Пьезоэлектрический исполнительный механизм по п.30, в котором покрываемым металлом является нержавеющая сталь. 37. Пьезоэлектрический исполнительный механизм по п.36, в котором используется нержавеющая сталь марки SS316. 38. Пьезоэлектрический исполнительный механизм по п.30, в котором покрываемый металл имеет толщину менее чем 0,0254 мм. 39. Исполнительный механизм клапана для использования в средах, содержащих очень реактивные или коррозионные газы, такие как фтор и другие галогены, содержащий изгибаемое устройство, включающее два удлиненных пьезоэлектрических элемента, изготовленных слоями вместе с токопроводящим металлом между двумя пьезоэлектрическими устройствами,металлический слой подложки, нанесенный на пьезоэлектрическое изгибаемое устройство, и покрытие из нержавеющей стали, которое инкапсулирует пьезоэлектрическое изгибаемое устройство и металлический слой подложки,включая диэлектрический слой, размещенный между покрытием из нержавеющей стали и металлическим слоем подложки. 40. Исполнительный механизм клапана по п.39, в котором диэлектрический слой имеет толщину менее чем 0,0254 мм, и покрытие из нержавеющей стали имеет толщину менее чем 0,0254 мм. 41. Исполнительный механизм клапана по п.39, который включает элемент закрытия, прикрепленный к пьезоэлектрическому изгибаемому устройству связующим веществом, и покрытие из нержавеющей стали, также покрытое связующим веществом. 42. Исполнительный механизм клапана по п.41, в котором диэлектрический слой размещен между связующим веществом и пьезоэлектрическим изгибаемым устройством. 43. Способ изготовления исполнительного механизма клапана, который содержит, по меньшей мере, одно пьезоэлектрическое устройство, включающий нанесение слоя металлического материала подложки на пьезоэлектрическое устройство, нанесение слоя диэлектрического материала на материал подложки и нанесение слоя металлического покрываемого материала, который является более коррозионностойким, чем пьезоэлектрическое устройство,на диэлектрический материал. 44. Способ по п.43, включающий нанесение слоя диэлектрического материала на материал подложки посредством осаждения пластмассы на материал подложки. 45. Способ по п.44, включающий осаждение пластмассы на материал подложки посредством распыления. 27 46. Способ по п.44, включающий осаждение пластмассы толщиной менее чем 0,0254 мм на материал подложки. 47. Способ по п.45, в котором пластмассой является Parylene. 48. Способ по п.43, в котором металлический cлой подложки включает никель. 49. Способ по п.43, включающий нанесение слоя металлического покрытия на диэлектрический материал посредством осаждения покрытия из нержавеющей стали на диэлектрический слой. 50. Способ по п.49, включающий осаждение покрытия из нержавеющей стали толщиной не менее чем 0,0254 мм. 28 51. Способ по п.50, в котором покрытие из нержавеющей стали является нержавеющей сталью марки SS316. 52. Способ по п.49, включающий закрепление элемента закрытия клапана из нержавеющей стали на часть диэлектрического слоя с помощью связующего вещества перед осаждением нержавеющей стали и затем осаждение нержавеющей стали для инкапсулирования пьезоэлектрического устройства, металлического слоя подложки, диэлектрического слоя и связующего вещества с покрытием из нержавеющей стали.

МПК / Метки

МПК: F16K 31/02, G05D 7/06

Метки: устройство, потока, текучей, способ, исполнительный, среды, изготовления, механизм, клапана, регулятора

Код ссылки

<a href="https://eas.patents.su/18-1508-ustrojjstvo-regulyatora-potoka-tekuchejj-sredy-ispolnitelnyjj-mehanizm-klapana-i-sposob-ego-izgotovleniya.html" rel="bookmark" title="База патентов Евразийского Союза">Устройство регулятора потока текучей среды, исполнительный механизм клапана и способ его изготовления</a>

Похожие патенты