Скачать PDF файл.

Формула / Реферат

1. Силовой трансформатор, содержащий, по меньшей мере, одну обмотку высокого напряжения и одну обмотку низкого напряжения, выполненные из гибкого изолированного проводника, отличающийся тем, что изоляция проводника содержит внутренний слой, обладающий полупроводниковыми свойствами, промежуточный твердый изоляционный слой и внешний слой, обладающий полупроводниковыми свойствами, причем витки обмотки высокого напряжения смешаны с витками обмотки низкого напряжения.

2. Трансформатор по п.1, отличающийся тем, что каждый слой витков обмотки низкого напряжения расположен между двумя соответствующими слоями обмотки высокого напряжения.

3. Трансформатор по п.1, отличающийся тем, что витки указанных обмоток расположены согласно повторяющейся периодической схеме расположения одного слоя из витков обмотки высокого напряжения, за которым следует слой из витков обмотки низкого напряжения, за которым следуют два слоя из витков обмотки высокого напряжения, за которыми следует слой из витков обмотки низкого напряжения, за которым следуют два слоя из витков обмотки высокого напряжения, и так далее.

4. Трансформатор по любому из пп.1-3, отличающийся тем, что каждый виток, по меньшей мере, части витков обмотки низкого напряжения разделен на подвитки, соединенные параллельно, для уменьшения разницы между числом витков обмотки высокого напряжения и общим числом витков обмотки низкого напряжения.

5. Трансформатор по п.4, отличающийся тем, что каждый виток обмотки низкого напряжения разделен на параллельно соединенные подвитки так, что суммарное число подвитков равно числу витков обмотки высокого напряжения.

6. Трансформатор по п.5, отличающийся тем, что витки обмотки высокого напряжения и витки обмотки низкого напряжения расположены симметрично в шахматном порядке относительно поперечного сечения обмоток.

7. Трансформатор по любому из пп.1-6, отличающийся тем, что внешний слой изоляции выполнен с возможностью подключения к источнику заранее определенного потенциала.

8. Трансформатор по п.7, отличающийся тем, что внешний слой изоляции выполнен с возможностью заземления.

9. Трансформатор по любому из пп.1-8, отличающийся тем, что, по меньшей мере, два соседних слоя имеют, по существу, одинаковые коэффициенты теплового расширения.

10. Трансформатор по любому из пп.1-9, отличающийся тем, что изолированный проводник выполнен многожильным, причем часть жил находится в электрическом контакте друг с другом.

11. Трансформатор по любому из пп.1-10, отличающийся тем, что каждый из указанных трех слоев изоляции фиксировано соединен с соседними слоями, по существу, по всей соединяющей поверхности.

12. Трансформатор по любому из пп.1-11, отличающийся тем, что площадь поперечного сечения проводника составляет от 80 до 3000 мм2.

13. Трансформатор по любому из пп.1-12, отличающийся тем, что наружный диаметр изолированного проводника составляет от 20 до 250 мм.

14. Трансформатор по любому из пп.1-13, отличающийся тем что между обмотками расположены распорки (27) из слоистого магнитного материала.

15. Трансформатор по любому из пп.1-14, отличающийся тем, что изоляция проводника выполнена с возможностью удержания электрического поля при высоком напряжении свыше 10 кВ, в частности свыше 36 кВ и наиболее предпочтительно свыше 72,5 кВ, до очень высоких значений напряжения передачи, таких как от 400 до 800 кВ или выше.

16. Трансформатор по любому из пп.1-15, отличающийся тем, что изоляция проводника выполнена с возможностью удержания электрического поля для диапазона значений мощности свыше 0,5 МВА, предпочтительно свыше 30 МВА и до 1000 МВА.

17. Способ намотки силового трансформатора по п.1, при котором одновременно формируют витки обмоток высокого и низкого напряжения, смешивая их между собой, из изолированного проводника, изоляция которого содержит внутренний слой, обладающий полупроводниковыми свойствами, промежуточный твердый изоляционный слой и внешний слой, обладающий полупроводниковыми свойствами.

18. Способ по п.17, отличающийся тем, что изолированные проводники высокого напряжения и низкого напряжения одновременно отматывают с соответствующих барабанов и наматывают на барабан трансформатора.

Рисунок 1

 

Текст

Смотреть все

1 Данное изобретение относится к силовому трансформатору, содержащему, по меньшей мере, одну обмотку высокого напряжения и одну обмотку низкого напряжения. Термин силовой трансформатор, используемый в настоящем описании, означает трансформатор, имеющий номинальную выходную мощность от нескольких сотен кВА до свыше 1000 МВА и номинальное напряжение от 3-4 кВ до очень высоких значений напряжения передачи, например от 400-800 кВ или выше. Обычные силовые трансформаторы описаны в работе А.С. Franklin and D.P. Franklin, Thevon Transformerboard in Grossleistungstransformatoren, опубликованной H. Weidman AG,Rapperswil mit Gesamtherstellung: Birkhuser AG,Basle, Switzerland. При передаче и распределении электроэнергии трансформаторы используют исключительно для обмена электроэнергией между двумя или более электросистемами. Имеются трансформаторы для мощностей от приблизительно 1 до 1000 МВА и до самых высоких используемых в настоящее время значений напряжений передачи. Обычные силовые трансформаторы содержат сердечник трансформатора, часто выполненный из слоистого, имеющего общую ориентацию листа, как правило, из кремнистого чугуна. Сердечник выполняют из нескольких стержней, соединенных ярмами, которые вместе образуют одно или более окон сердечника. Трансформаторы с сердечником обычно называют сердечниковыми трансформаторами. Вокруг стержней сердечника обеспечивают несколько обмоток. В силовых трансформаторах эти обмотки почти всегда выполняют в концентрической конфигурации и распределяют по длине стержня сердечника. Известны и другие виды конструкций сердечника, например конструкции броневого трансформатора, которые обычно имеют прямоугольные обмотки и прямоугольные стержневые секции, расположенные снаружи обмоток. Известны обычные силовые трансформаторы с воздушным охлаждением для диапазона низких значений мощности. Для экранирования этих трансформаторов часто обеспечивают наружный кожух, который также понижает интенсивность исходящих от трансформаторов внешних магнитных полей. Большинство силовых трансформаторов,однако, имеют масляное охлаждение, где масло также служит изолирующей средой. Обычный трансформатор с масляным охлаждением и масляной изоляцией заключают в наружный кожух, 002487 2 который должен соответствовать повышенным требованиям. Поэтому конструкция такого трансформатора с его элементами связи цепей,элементами прерывателей и вводов является сложной. Применение масла для охлаждения и изоляции также усложняет обслуживание трансформатора и представляет экологическую опасность. Известный сухой трансформатор без масляной изоляции и охлаждения, выполненный для номинальных мощностей от 3-4 кВ и выше до очень высоких значений напряжения передачи, содержит обмотки, выполненные из проводников, представленных на фиг. 1. Проводник содержит центральное проводящее средство,состоящее из нескольких неизолированных (как вариант, изолированных) проводных жил 5. Вокруг проводящего средства находится внутренняя полупроводящая оболочка 6, которая контактирует, по меньшей мере, с некоторыми неизолированными жилами 5. Эта полупроводящая оболочка 6, в свою очередь, окружена основной изоляцией кабеля в виде экструдированного твердого изолирующего слоя 7. Этот изолирующий слой 7 окружен внешней полупроводящей оболочкой 8. Площадь проводника кабеля может изменяться от 80 до 3000 мм 2, а наружный диаметр кабеля может иметь размеры от 20 до 250 мм. По меньшей мере, два соседних слоя имеют, по существу, равные коэффициенты теплового расширения. Несмотря на то, что оболочки 6 и 8 охарактеризованы в настоящем описании как полупроводящие, на практике их формируют из основного полимера с частицами углеродной сажи и металлическими частицами, и они имеют удельное объемное сопротивление между 1 и 105 Ом/см, предпочтительно между 10 и 500 Ом/см. Соответствующие основные полимеры для оболочек 6 и 8 (и для изолирующего слоя 7) включают в себя сополимер ацетата этиленвинила/нитрильный каучук, полиэтилен с привитым бутилом, сополимер акрилата этиленбутила, сополимер акрилата этиленэтила,этиленпропеновый каучук, полиэтилены низкой плотности, полибутилен, полиметилпентен и сополимер акрилата этилена. Внутренняя полупроводящая оболочка 6 жестко соединена с изолирующим слоем 7 по всему межсоединению между ними. Аналогично внешняя полупроводящая оболочка 8 жестко соединена с изолирующим слоем 7 по всему их межсоединению. Оболочки 6 и 8 и слой 7 образуют твердую систему изоляции, и их целесообразно выполнять совместным экструдированием вокруг проводных жил 5. Хотя удельная электропроводность внутренней полупроводящей оболочки 6 ниже электропроводности проводящих проводных жил 5,она является достаточной для выравнивания потенциала по всей ее поверхности. Соответственно электрическое поле распределяется более 3 единообразно по окружности изолирующего слоя 7, и риск локального усиления поля и частичного разряда сводится к минимуму. Потенциал внешней полупроводящей оболочки 8, который предпочтителен нулю или потенциалу земли или другому регулируемому потенциалу, выравнивают по этому значению по электропроводности оболочки. При этом полупроводящая оболочка 8 имеет достаточное удельное сопротивление, чтобы удерживать в себе электрическое поле. Ввиду этого удельного сопротивления желательным является заземлить проводящую полимерную оболочку или подключить ее к другому регулируемому потенциалу через интервалы по ее длине. Трансформатор в соответствии с данным изобретением может быть одно-, трех- и многофазным трансформатором, а сердечник может иметь любую конструкцию. На фиг. 2 представлен трехфазный шихтованный сердечник трансформатора. Сердечник имеет обычную конструкцию и содержит три стержня 9, 10, 11 сердечника и соединительные ярма 12, 13. Обмотки концентрически намотаны вокруг стержней сердечника. В трансформаторе, представленном на фиг. 2, имеется три концентрических витка 14, 15, 16 обмотки. Самый внутренний виток 14 обмотки может представлять собой первичную обмотку, а два других витка 15,16 обмотки - вторичную обмотку. Для простоты этого изображения такие подробности, как соединения обмоток, не показаны. Промежуточные стержни 17, 18 обеспечивают в определенных местоположениях вокруг обмоток. Эти стержни 17, 18 можно выполнить из изолирующего материала для обеспечения определенного интервала между витками 14, 15, 16 обмотки в целях охлаждения, крепления и пр. либо их можно выполнить из электропроводящего материала, чтобы сформировать часть системы заземления обмоток 14, 15, 16. Механическая конструкция отдельных катушек трансформатора должна быть такой, чтобы выдерживать силы, появляющиеся в результате токов короткого замыкания. Поскольку эти силы в силовом трансформаторе могут иметь очень высокие значения, то катушки необходимо распределить и пропорционировать таким образом, чтобы обеспечить значительный предел погрешности, и по этой причине катушки нельзя сконструировать таким образом, чтобы оптимизировать рабочие характеристики при нормальной работе. Основная цель данного изобретения заключается в том, чтобы уменьшить значительность охарактеризованных выше проблем, относящихся к силам короткого замыкания в сухом трансформаторе. Эта цель достигается путем обеспечения трансформатора, охарактеризованного в п.1 формулы изобретения. 4 За счет выполнения обмоток трансформатора из магнитно-проницаемого проводника,который при этом практически не имеет электрических полей вне пределов его внешней полупроводящей оболочки, обмотки высокого и низкого напряжения можно удобно комбинировать произвольным образом, чтобы свести к минимуму силы короткого замыкания. Это комбинирование было бы неосуществимым в случае отсутствия полупроводящей оболочки или других средств удержания электрического поля и поэтому представлялось невозможным в обычном масляном силовом трансформаторе,поскольку изоляция обмоток не выдержала бы электрического поля, имеющегося между обмотками высокого и низкого напряжения. Также возможно добиться уменьшения распределенной индуктивности и выполнить сердечник трансформатора таким образом, чтобы имелось оптимальное соответствие между размером окна и массой сердечника. В соответствии с одним из вариантов осуществления данного изобретения, по меньшей мере, некоторые витки обмотки низкого напряжения разделяют, каждый из них, на некоторое число подвитков, соединяемых параллельно для снижения разницы между числом витков обмотки высокого напряжения и общим числом витков обмотки низкого напряжения в целях наиболее возможного единообразного комбинирования витков обмотки высокого напряжения и витков обмотки низкого напряжения. Каждый виток обмотки низкого напряжения предпочтительно разделяют на такое число соединяемых параллельно подвитков, чтобы общее число витков обмотки низкого напряжения было равно числу витков обмотки высокого напряжения. Витки обмоток высокого напряжения и низкого напряжения затем можно единообразно смешать, чтобы магнитное поле, формируемое витками обмотки низкого напряжения, по существу, устраняло магнитное поле от витков обмотки высокого напряжения. В соответствии еще с одним предпочтительным вариантом осуществления данного изобретения витки обмотки высокого напряжения и витки обмотки низкого напряжения располагают симметрично в шахматном порядке в поперечном сечении обмоток. Это является оптимальным расположением для получения эффективного взаимного устранения магнитных полей от обмоток низкого и высокого напряжения и поэтому является оптимальным расположением для уменьшения сил короткого замыкания катушек. В соответствии еще с одним предпочтительным вариантом осуществления данного изобретения, по меньшей мере, два соседних слоя имеют, по существу, одинаковые коэффициенты теплового расширения. Таким образом можно избежать тепловых повреждений обмоток. 5 В соответствии еще с одним аспектом данного изобретения обеспечен способ намотки трансформатора согласно п.18 формулы изобретения. Настоящее изобретение раскрыто на примерах вариантов реализации трансформатора,которые приведены далее и изложены со ссылкой на прилагаемые чертежи, где фиг. 1 - пример кабеля, используемого в обмотках трансформатора согласно изобретению; фиг. 2 - обычный трехфазный трансформатор; фиг. 3 и 4 - поперечные сечения, представляющие разные варианты расположения обмоток высокого напряжения и низкого напряжения трансформатора согласно данному изобретению; и фиг. 5 - способ намотки трансформатора. На фиг. 3 представлено поперечное сечение части обмоток силового трансформатора в сердечнике 22 трансформатора согласно данному изобретению. Слой обмотки низкого напряжения 26 расположен между двумя слоями обмотки высокого напряжения 28. В этом варианте осуществления изобретения коэффициент трансформации составляет 1:2. Направление тока в обмотке низкого напряжения 26 противоположно направлению тока в обмотке 28 высокого напряжения, и вследствие этого силы, возникающие из-за токов в обмотках низкого напряжения и высокого напряжения, частично компенсируют друг друга. Эта возможность снижения воздействия обусловленных током сил очень важна, особенно в случае короткого замыкания. Распорки 27 из слоистого магнитного материала, а также прокладки 29, обеспечивающие воздушные зазоры, расположены между обмотками 26, 28 для повышения КПД трансформатора. Компенсацию сил короткого замыкания можно в еще большей степени повысить путем разделения витков обмотки низкого напряжения на некоторое число подвитков, соединяемых параллельно, предпочтительно таким образом,чтобы общее число витков низкого напряжения стало равным числу витков обмотки высокого напряжения. Поэтому если коэффициент трансформации составляет, например, 1:3, то каждый виток обмотки низкого напряжения расщепляют на три подвитка. Тогда будет возможным комбинирование обмоток низкого напряжения и высокого напряжения более единообразным образом. Оптимальное расположение обмоток показано на фиг. 4, где витки 30 и 32 обмоток низкого напряжения и высокого напряжения соответственно расположены симметрично в шахматном порядке. В этом варианте осуществления магнитные поля от каждого витка обмоток низкого и высокого напряжения 30, 32, по существу, компенсируют друг друга и силы ко 002487 6 роткого замыкания почти полностью компенсируются. За счет разделения витка обмотки на некоторое число подвитков проводящую площадь каждого подвитка можно соответственно уменьшить, поскольку сумма значений силы тока в подвитках остается равной значениям силы тока в первоначальном витке обмотки. Поэтому при разделении витков обмотки какойлибо дополнительный проводящий материал(обычно медь) не требуется, если прочие условия остаются неизменными. На фиг. 5 схематически представлено, как происходит намотка трансформатора согласно данному изобретению. Сначала первый барабан 40 обеспечивают проводником 42 высокого напряжения, а второй барабан 44 обеспечивают проводником низкого напряжения 46. Проводники 42, 46 отматывают с барабанов 40, 44 и наматывают на барабан трансформатора 48; при этом все три барабана 40, 44, 48 вращаются одновременно. Поэтому проводники высокого напряжения и низкого напряжения можно удобным образом смешивать друг с другом. Соединения можно обеспечить между разными слоями обмотки. В трансформаторе согласно данному изобретению магнитная энергия и поэтому магнитные поля рассеяния в обмотках уменьшаются. Обеспечивается возможность выбирать полные электрические сопротивления в широком диапазоне значений. Системы электрической изоляции обмоток трансформатора согласно данному изобретению выполнены с возможностью работы с очень высокими значениями напряжения и с соответствующими электрическими и тепловыми нагрузками, которые могут возникать при этих значениях напряжения. Например, силовые трансформаторы согласно данному изобретению могут иметь номинальные мощности свыше 0,5 МВА, предпочтительно свыше 10 МВА, более предпочтительно свыше 30 МВА и до 1000 МВА; и иметь значения номинального напряжения от 3 до 4 кВ, предпочтительно свыше 36 кВ и более предпочтительно свыше 72,5 кВ до очень высоких значений напряжения передачи от 400-800 кВ и выше. При высоких значениях рабочего напряжения частичные разряды представляют собой серьезную проблему для известных систем изоляции. Если в изоляции имеются пустоты или поры, то может возникать внутренний коронный разряд, в результате чего изолирующий материал постепенно разрушается, в конечном счете приводя к пробою изоляции. Электрическая нагрузка на электрическую изоляцию в работе трансформатора согласно данному изобретению снижается, и тем самым у внутреннего первого слоя системы изоляции,имеющей полупроводящие свойства, обеспечивается, по существу, тот же электрический потенциал, что и у центрального проводящего 7 средства, который он окружает, а внешний второй слой системы изоляции, имеющей полупроводящие свойства, имеет регулируемый потенциал, то есть потенциал земли. Поэтому электрическое поле в твердом электрически изолирующем слое между этими внутренним и внешним слоями распределено, по существу, единообразно по толщине промежуточного слоя. При использовании материалов с аналогичными термическими свойствами и небольшим числом дефектов в этих слоях системы изоляции вероятность частичных разрядов при данных значениях рабочего напряжения снижается. Таким образом можно выполнить трансформатор, который может выдерживать очень высокие значения рабочего напряжения, обычно до 800 кВ или выше. Хотя предпочтительно наносить электрическую изоляцию экструдированием, также возможно выполнение системы электрической изоляции с помощью плотно намотанных перекрывающих друг друга слоев пленки или листового материала. Таким образом можно выполнить и полупроводящие слои, и слой электрической изоляции. Систему изоляции можно выполнить из полностью синтетической пленки с внутренним и внешним полупроводящими слоями или частями, выполненными из полимерной тонкой пленки, например, из полипропилена, полиэтилена, полиэтилена низкой плотности, полиэтилена высокой плотности, с включенными в нее проводящими частицами, такими как углеродная сажа, или металлическими частицами и с изолирующим слоем или изолирующей частью между полупроводящими слоями или частями. При выполнении внахлест достаточно тонкая пленка будет иметь стыковые промежутки,которые меньше, чем минимумы Пашена, тем самым устраняется необходимость жидкой пропитки. Изоляция, выполненная из сухой многослойной тонкой пленки, также имеет хорошие термические свойства. Еще один пример выполнения системы электрической изоляции аналогичен обычному кабелю с целлюлозной основой, в котором тонкий материал на основе целлюлозы, или синтетической бумаги, или нетканого материала наматывают внахлест вокруг проводника. В этом случае полупроводящие слои на обеих сторонах изолирующего слоя можно выполнить из целлюлозной бумаги или нетканого материала, сделанными из волокон изолирующего материала,с включенными в них проводящими частицами. Изолирующий слой может быть выполнен из того же материала основы либо можно использовать другой материал. Еще один пример системы изоляции обеспечивается комбинированием пленки и волоконного изолирующего материала либо в виде слоистого материала, либо с выполнением путем наложения друг на друга. Примером этой 8 системы изоляции является выпускаемый промышленностью бумажный полипропиленовый слоистый материал, но возможны также и другие комбинации пленки и волоконных частей. В этих системах можно применять различные пропитки, такие как пропитки минеральным маслом. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Силовой трансформатор, содержащий,по меньшей мере, одну обмотку высокого напряжения и одну обмотку низкого напряжения,выполненные из гибкого изолированного проводника, отличающийся тем, что изоляция проводника содержит внутренний слой, обладающий полупроводниковыми свойствами, промежуточный твердый изоляционный слой и внешний слой, обладающий полупроводниковыми свойствами, причем витки обмотки высокого напряжения смешаны с витками обмотки низкого напряжения. 2. Трансформатор по п.1, отличающийся тем, что каждый слой витков обмотки низкого напряжения расположен между двумя соответствующими слоями обмотки высокого напряжения. 3. Трансформатор по п.1, отличающийся тем, что витки указанных обмоток расположены согласно повторяющейся периодической схеме расположения одного слоя из витков обмотки высокого напряжения, за которым следует слой из витков обмотки низкого напряжения, за которым следуют два слоя из витков обмотки высокого напряжения, за которыми следует слой из витков обмотки низкого напряжения, за которым следуют два слоя из витков обмотки высокого напряжения, и так далее. 4. Трансформатор по любому из пп.1-3,отличающийся тем, что каждый виток, по меньшей мере, части витков обмотки низкого напряжения разделен на подвитки, соединенные параллельно, для уменьшения разницы между числом витков обмотки высокого напряжения и общим числом витков обмотки низкого напряжения. 5. Трансформатор по п.4, отличающийся тем, что каждый виток обмотки низкого напряжения разделен на параллельно соединенные подвитки так, что суммарное число подвитков равно числу витков обмотки высокого напряжения. 6. Трансформатор по п.5, отличающийся тем, что витки обмотки высокого напряжения и витки обмотки низкого напряжения расположены симметрично в шахматном порядке относительно поперечного сечения обмоток. 7. Трансформатор по любому из пп.1-6,отличающийся тем, что внешний слой изоляции выполнен с возможностью подключения к источнику заранее определенного потенциала. 8. Трансформатор по п.7, отличающийся тем, что внешний слой изоляции выполнен с возможностью заземления. 9. Трансформатор по любому из пп.1-8,отличающийся тем, что, по меньшей мере, два соседних слоя имеют, по существу, одинаковые коэффициенты теплового расширения. 10. Трансформатор по любому из пп.1-9,отличающийся тем, что изолированный проводник выполнен многожильным, причем часть жил находится в электрическом контакте друг с другом. 11. Трансформатор по любому из пп.1-10,отличающийся тем, что каждый из указанных трех слоев изоляции фиксированно соединен с соседними слоями, по существу, по всей соединяющей поверхности. 12. Трансформатор по любому из пп.1-11,отличающийся тем, что площадь поперечного сечения проводника составляет от 80 до 3000 мм 2. 13. Трансформатор по любому из пп.1-12,отличающийся тем, что наружный диаметр изолированного проводника составляет от 20 до 250 мм. 14. Трансформатор по любому из пп.1-13,отличающийся тем что между обмотками расположены распорки (27) из слоистого магнитного материала. 10 15. Трансформатор по любому из пп.1-14,отличающийся тем, что изоляция проводника выполнена с возможностью удержания электрического поля при высоком напряжении свыше 10 кВ, в частности свыше 36 кВ и наиболее предпочтительно свыше 72,5 кВ, до очень высоких значений напряжения передачи, таких как от 400 до 800 кВ или выше. 16. Трансформатор по любому из пп.1-15,отличающийся тем, что изоляция проводника выполнена с возможностью удержания электрического поля для диапазона значений мощности свыше 0,5 МВА, предпочтительно свыше 30 МВА и до 1000 МВА. 17. Способ намотки силового трансформатора по п.1, при котором одновременно формируют витки обмоток высокого и низкого напряжения, смешивая их между собой, из изолированного проводника, изоляция которого содержит внутренний слой, обладающий полупроводниковыми свойствами, промежуточный твердый изоляционный слой и внешний слой,обладающий полупроводниковыми свойствами. 18. Способ по п.17, отличающийся тем, что изолированные проводники высокого напряжения и низкого напряжения одновременно отматывают с соответствующих барабанов и наматывают на барабан трансформатора.

МПК / Метки

МПК: H01F 27/28

Метки: трансформатор

Код ссылки

<a href="https://eas.patents.su/6-2487-transformator.html" rel="bookmark" title="База патентов Евразийского Союза">Трансформатор</a>

Похожие патенты