Нагреватели с ограниченной температурой для нагревания подземных пластов или скважин
Номер патента: 9586
Опубликовано: 28.02.2008
Авторы: Сэндберг Честер Ледли, Сан Джейм Сантос, Харрис Кристофер Келвин, Винигар Харолд Дж., Карл Фредерик Гордон Младший, Менотти Джеймс Луис
Формула / Реферат
1. Способ нагревания подземного пласта или подземной скважины, включающий
размещение в подземном пласте или подземной скважине нагревателя, содержащего один или более электрических проводников;
подачу переменного электрического тока в один или более электрических проводников от источника тока для получения выхода электрического резистивного тепла;
при этом по меньшей мере один из электрических проводников нагревателя содержит резистивный ферромагнитный материал, который создает тепло, когда переменный ток проходит через электрически резистивный ферромагнитный материал;
причем ферромагнитный материал имеет температуру Кюри вблизи температуры, выбранной в качестве температуры нагревателя для нагрева подземного пласта или подземной скважины;
тем самым создается уменьшенное количество тепла над или вблизи выбранной температуры нагревателя по сравнению с количеством тепла при других температурах при подаче в один или более электрических проводников, содержащих ферромагнитный материал, переменного электрического тока от источника тока;
при этом ферромагнитный материал используют такой, что сопротивление переменному току от указанного источника тока для таких электрических проводников при температуре выше температуры Кюри составляет около 80% или менее сопротивления переменному току этих электрических проводников при температуре примерно на 50шС ниже температуры Кюри.
2. Способ по п.1, в котором электрически резистивный ферромагнитный материал отдельно или в комбинации с другим хорошо электрически проводящим материалом, соединенным с резистивным ферромагнитным материалом, автоматически создает уменьшенное количество тепла при превышении или вблизи выбранной температуры нагревателя.
3. Способ по любому из пп.1 или 2, в котором электрически резистивный ферромагнитный материал отдельно или в комбинации с другим хорошо электрически проводящим материалом, соединенным с резистивным ферромагнитным материалом, автоматически создает избирательно уменьшенное количество тепла при превышении или вблизи выбранной температуры нагревателя.
4. Способ по любому из пп.1-3, в котором сопротивление переменному току электрически резистивного ферромагнитного материала уменьшается при превышении выбранной температуры нагревателя для создания уменьшенного количества тепла.
5. Способ по любому из пп.1-3, в котором толщина электрически резистивного ферромагнитного материала приблизительно больше 3/4, 1 или 3/2 глубины скин-слоя переменного тока при температуре Кюри электрически резистивного ферромагнитного материала.
6. Способ по любому из пп.1-5, в котором выбранная температура нагревателя является приблизительно температурой Кюри электрически резистивного ферромагнитного материала.
7. Способ по любому из пп.1-6, в котором нагреватель с электрически резистивным ферромагнитным материалом размещают в содержащем углеводороды пласте.
8. Способ по любому из пп.1-7, в котором нагреватель с электрически резистивным ферромагнитным материалом размещают в содержащем углеводороды пласте с целью пиролиза, по меньшей мере, некоторых углеводородов в пласте.
9. Способ по любому из пп.1-8, в котором в нагреватель подают переменный электрический ток таким образом, что выход электрического резистивного тепла при температуре нагревателя ниже выбранной температуры составляет приблизительно более 400 Вт/м и/или выход уменьшенного количества тепла при температуре нагревателя над или вблизи выбранной температуры составляет приблизительно менее 400 Вт/м.
10. Способ по любому из пп.1-9, дополнительно включающий управление величиной подаваемого в электрические проводники электрического тока для управления количеством тепла, создаваемого электрически резистивным ферромагнитным материалом.
11. Способ по любому из пп.1-10, в котором переменный ток представляет собой переменный ток по меньшей мере 70 А или по меньшей мере 100 А.
12. Способ по любому из пп.1-11, дополнительно включающий подачу переменного тока с частотой между около 100 и около 600 Гц или частотой 150, 180 Гц или с частотой, превышающей в 3 раза частоту сети географического местоположения.
13. Способ по любому из пп.1-12, дополнительно включающий подачу переменного тока с напряжением приблизительно свыше 650 В.
14. Способ по любому из пп.1-13, дополнительно включающий поддержание относительно постоянного выхода тепла в диапазоне температур между около 100 и 750шС или в диапазоне температур между около 300 и 600шС.
15. Способ по любому из пп.1-14, дополнительно включающий управление глубиной скин-слоя в электрически резистивном ферромагнитном материале посредством управления частотой подаваемого переменного тока.
16. Способ по любому из пп.1-15, дополнительно включающий увеличение переменного тока, подаваемого по меньшей мере в один из электрических проводников при повышении температуры этих электрических проводников, и продолжение увеличения тока, пока температура не будет равна или вблизи выбранной температуры нагревателя.
17. Способ по любому из пп.1-16, в котором по меньшей мере один из электрических проводников размещают в содержащем углеводороды пласте и добывают, по меньшей мере, некоторые углеводороды из пласта.
18. Способ по любому из пп.1-17, в котором по меньшей мере один из электрических проводников размещают так, что выделяется тепло для нагрева флюидов в пласте.
19. Способ по любому из пп.1-18, в котором по меньшей мере один из электрических проводников размещают так, чтобы происходило выделение тепла в пласт, при этом эти электрические проводники выполнены с возможностью создания уменьшенного выхода тепла над или вблизи выбранной температуры нагревателя, который составляет около 20% или менее выхода тепла при температуре около 50шС ниже выбранной температуры.
20. Система для нагревания подземного пласта или подземной скважины с использованием способа по любому из пп.1-19, содержащая
нагреватель, содержащий один или более электрических проводников, выполненных с возможностью расположения в подземном пласте или в подземной скважине, при этом по меньшей мере один из электрических проводников содержит резистивный ферромагнитный материал, который создает тепло, когда переменный ток от источника переменного тока проходит через электрически резистивный ферромагнитный материал;
причем ферромагнитный материал имеет температуру Кюри вблизи температуры, выбранной в качестве температуры нагревателя для нагрева подземного пласта или подземной скважины;
а сопротивление переменному току от указанного источника тока для таких электрических проводников при температуре выше температуры Кюри составляет около 80% или менее сопротивления переменному току этих электрических проводников при температуре примерно на 50шС ниже температуры Кюри.
21. Система по п.20, в которой система содержит три или более электрических проводников и в которой по меньшей мере три электрических проводника соединены в трехфазную электрическую конфигурацию.
22. Система по любому из пп.20 или 21, в которой по меньшей мере один из электрических проводников проявляет увеличение рабочей температуры приблизительно менее чем на 1,5шС при превышении или вблизи выбранной рабочей температуры нагревателя, когда тепловая нагрузка вблизи этого электрического проводника уменьшается приблизительно на 1 Вт/м.
23. Система по любому из пп.20-22, в которой по меньшей мере один из электрических проводников обеспечивает уменьшенный выход тепла над или вблизи выбранной температуры нагревателя, который составляет около 20% или менее выхода тепла при температуре на около 50шС ниже выбранной температуры нагревателя.
24. Система по любому из пп.20-23, в которой сопротивление переменному току по меньшей мере одного из электрических проводников над или вблизи выбранной температуры нагревателя составляет 80% или менее сопротивления переменному току при температуре приблизительно на 50шС ниже выбранной температуры нагревателя.
25. Система по любому из пп.20-24, в которой по меньшей мере для одного из электрических проводников, содержащих электрически резистивэыщ ферромагнитный материал, отношение максимального сопротивления переменному току при температуре непосредственно ниже температуры Кюри к максимальному сопротивлению переменному току при температуре непосредственно выше температуры Кюри равно по меньшей мере около 2:1.
26. Система по любому из пп.20-25, в которой система содержит два или более электрических проводников и электрически изолирующий материал, расположенный между по меньшей мере двумя электрическими проводниками.
27. Система по любому из пп.20-26, в которой электрически резистивный ферромагнитный материал содержит железо, никель, хром, кобальт, вольфрам или их смесь.
28. Система по любому из пп.20-27, в которой электрически резистивный ферромагнитный материал соединен с хорошо электрически проводящим материалом.
29. Система по любому из пп.20-28, в которой по меньшей мере один из электрических проводников длиннее, приблизительно, чем 10 м.
30. Способ выполнения системы для нагрева подземного пласта или подземной скважины, включающий соединение одного или более электрических проводников с образованием системы по любому из пп.20-29.
31. Способ установки системы по любому из пп.20-29, включающий расположение электрических проводников в скважине.
32. Способ установки системы по любому из пп.20-29, включающий образование скважины в подземном пласте и расположение электрических проводников в скважине в пласте.
33. Нагреватель для использования в способе по любому из пп.1-19, содержащий
электрический проводник, который обеспечивает выход электрического резистивного тепла во время подачи переменного электрического тока в электрический проводник, при этом электрический проводник содержит электрически резистивный ферромагнитный материал, по меньшей мере, частично окружающий неферромагнитный материал, так что при подаче электрического тока от источника переменного тока нагреватель обеспечивает уменьшенное количество тепла при температуре над или вблизи выбранной температуры нагревателя по сравнению с количеством тепла при более низких температурах;
при этом ферромагнитный материал выбран такой, что сопротивление переменному току от указанного источника тока для такого электрического проводника при температуре выше температуры Кюри составляет около 80% или менее сопротивления переменному току этого электрического проводника при температуре примерно на 50шС ниже температуры Кюри;
электрический изолятор, по меньшей мере, частично окружающий электрический проводник; и
покрытие или оболочку, по меньшей мере, частично окружающую электрический изолятор.
34. Нагреватель для использования в способе по любому из пп.1-19, содержащий
электрический проводник, который обеспечивает выход электрического резистивного тепла во время подачи переменного электрического тока в электрический проводник, при этом электрический проводник содержит электрически резистивный ферромагнитный материал, по меньшей мере, частично окружающий неферромагнитный материал, так что при подаче электрического тока от источника переменного тока нагреватель обеспечивает уменьшенное количество тепла при температуре над или вблизи выбранной температуры нагревателя по сравнению с количеством тепла при более низких температурах;
при этом ферромагнитный материал выбран такой, что сопротивление переменному току от указанного источника тока для такого электрического проводника при температуре выше температуры Кюри составляет около 80% или менее сопротивления переменному току этого электрического проводника при температуре примерно на 50шС ниже температуры Кюри;
трубу, по меньшей мере, частично окружающую электрический проводник; и
центратор, выполненный с возможностью удерживания разделительного расстояния между электрическим проводником и трубой.
35. Способ нагревания подземного пласта или подземной скважины, содержащий
подачу переменного электрического тока с частотой приблизительно между 100 и 600 Гц или частотой около 150, 180 Гц или частотой, превышающей в 3 раза частоту сети географического местоположения, в один или более электрических проводников, расположенных в подземном пласте или подземной скважине, образующих нагреватель, для обеспечения выхода электрического резистивного тепла, при этом по меньшей мере один из электрических проводников содержит электрически резистивный ферромагнитный материал, который создает тепло, когда переменный ток проходит через электрически резистивный ферромагнитный материал;
причем ферромагнитный материал имеет температуру Кюри вблизи температуры, выбранной в качестве температуры нагревателя для нагрева подземного пласта или подземной скважины;
тем самым создается уменьшенное количество тепла при температуре над или вблизи выбранной температуры нагревателя по сравнению с количеством тепла при более низких;
при этом ферромагнитный материал используют такой, что сопротивление переменному току от указанного источника тока для таких электрических проводников при температуре выше температуры Кюри составляет около 80% или менее сопротивления переменному току этих электрических проводников при температуре примерно на 50шС ниже температуры Кюри.
36. Способ нагревания подземного пласта или подземной скважины, содержащий
подачу переменного электрического тока с напряжением выше 650 В в один или более электрических проводников, расположенных в подземном пласте или подземной скважине, образующих нагреватель, для обеспечения выхода электрического резистивного тепла, при этом по меньшей мере один из электрических проводников содержит электрически резистивный ферромагнитный материал, который создает тепло, когда переменный ток проходит через электрически резистивный ферромагнитный материал;
причем ферромагнитный материал имеет температуру Кюри вблизи температуры, выбранной в качестве температуры нагревателя для нагрева подземного пласта или подземной скважины;
тем самым создается уменьшенное количество тепла при температуре над или вблизи выбранной температуры нагревателя по сравнению с количеством тепла при более низких;
при этом ферромагнитный материал используют такой, что сопротивление переменному току от указанного источника тока для таких электрических проводников при температуре выше температуры Кюри составляет около 80% или менее сопротивления переменному току этих электрических проводников при температуре примерно на 50шС ниже температуры Кюри.
Текст
009586 Область техники, к которой относится изобретение Данное изобретение относится, в целом, к способам и системам для нагревания различных подземных пластов. Некоторые варианты выполнения относятся к способам и системам для использования ограниченных по температуре нагревателей для нагревания подземных пластов, включая содержащие углеводороды пласты, или скважин. Уровень техники Углеводороды, добываемые из подземных (например, осадочных) пластов, часто используют в качестве энергетических ресурсов, сырья и в качестве продуктов потребления. Беспокойство в связи с истощением доступных углеводородных запасов и общим понижением качества добываемых углеводородов привело к разработке процессов для более эффективных извлечения, обработки и/или использования доступных углеводородных запасов. Можно использовать внутрипластовые процессы для извлечения углеводородных материалов из подземных пластов. Химические и/или физические свойства углеводородного материала внутри подземного пласта иногда необходимо изменять для обеспечения более простого извлечения углеводородного материала из подземного пласта. Химические и физические изменения могут включать внутрипластовые реакции, которые создают удаляемые флюиды, изменяют состав,изменяют растворимость, изменяют фазы и/или изменяют вязкость углеводородного материала внутри пласта. Флюид может быть, но, не ограничиваясь этим, газом, жидкостью, эмульсией, суспензией и/или потоком твердых частиц, который имеет характеристики потока, аналогичные потоку жидкости. Для нагревания подземного пласта можно использовать источник нагревания. Для нагревания подземных пластов с помощью излучения и/или проводимости можно использовать электрические нагреватели. Электрический нагреватель можно резистивно нагревать с помощью элемента. В патенте США 2548360, выданном Жермену, описан электрический нагревательный элемент, помещенный внутри вязкой нефти внутри скважины. Нагревательный элемент нагревает и разжижает нефть для обеспечения откачки нефти из скважины. В патенте США 4716960, выданном Истлунду и др., описано электрическое нагревание насосно-компрессорной трубы нефтяной скважины посредством пропускания тока относительно низкого напряжения через насосно-компрессорную трубу для предотвращения образования твердых материалов. В патенте США 5065818, выданном Ван Эгмонду, описан электрический нагревательный элемент, который зацементирован в испытательную скважину без оболочки, окружающей нагревательный элемент. В патенте США 6023554, выданном Винегару и др., описан электрический нагревательный элемент, который расположен в оболочке. Нагревательный элемент создает энергию излучения, которая нагревает оболочку. Гранулированный твердый наполнительный материал может быть расположен между оболочкой и пластом. Оболочка за счет проводимости может нагревать наполнительный материал,который, в свою очередь, за счет проводимости нагревает пласт. В патенте США 4570715, выданном Ван Меурсу и др., описан электрический нагревательный элемент. Нагревательный элемент имеет электрически проводящий сердечник, окружающий слой изоляционного материала и окружающий его металлический кожух. Проводящий сердечник может иметь сравнительно низкое сопротивление при высоких температурах. Изоляционный материал может иметь электрическое сопротивление, прочность на сжатие и теплопроводные свойства, которые являются относительно высокими при высоких температурах. Изоляционный материал может воспрещать образование электрической дуги от сердечника к металлическому кожуху. Металлический кожух может иметь прочность на растяжение и сопротивление ползучести, которые относительно велики при высоких температурах. В патенте США 5060287, выданном Ван Эгмонду, описан электрический нагревательный элемент, имеющий сердечник из сплава меди с никелем. Были приложены значительные усилия для разработки способов и систем для экономичной добычи углеводородов, водорода и/или других продуктов из содержащих углеводороды пластов. Однако в настоящее время все еще имеются содержащие углеводороды пласты, из которых нельзя экономически выгодно добывать углеводороды, водород и/или другие продукты. Таким образом, все еще имеется потребность в улучшенных способах и системах для добычи углеводородов, водорода и/или других продуктов из различных содержащих углеводороды пластов. Раскрытие изобретения В одном варианте выполнения можно пропускать переменный электрический ток через один или более электрических проводников. Электрические проводники могут быть расположены под землей или в подземной скважине. Электрические проводники могут обеспечивать выход тепла, обусловленного электрическим сопротивлением, после подачи переменного электрического тока. По меньшей мере один из электрических проводников может включать электрически резистивный ферромагнитный материал. Электрически резистивный ферромагнитный материал может обеспечивать нагревание при прохождении переменного тока через электрически резистивный ферромагнитный материал. Электрически резистивный ферромагнитный материал может обеспечивать уменьшенное количество тепла выше или вблизи выбранной температуры. В некоторых вариантах выполнения ферромагнитный материал может автоматически обеспечивать уменьшенное количество тепла выше или вблизи выбранной температуры. В некоторых вариантах выполнения выбранная температура приблизительно равна температуре Кюри электри-1 009586 чески резистивного ферромагнитного материала. В одном варианте выполнения обеспечивается передача тепла с электрически резистивного ферромагнитного материала в часть подземного пласта или подземной скважины. Краткое описание чертежей Преимущества данного изобретения следуют для специалистов в данной области техники из последующего подробного описания вариантов выполнения со ссылками на чертежи, на которых изображено: фиг. 1 - стадии нагревания содержащего углеводороды пласта; фиг. 2 - схема варианта выполнения части внутрипластовой системы конверсии для обработки содержащего углеводороды пласта; фиг. 3 - вариант выполнения источника тепла в виде изолированного проводника; фиг. 4 - вариант выполнения источника тепла типа проводник в канале в пласте; фиг. 5, 6 и 7 - разрез варианта выполнения нагревателя с ограниченной температурой с наружным проводником, имеющим ферромагнитную секцию и неферромагнитную секцию; фиг. 8, 9, 10 и 11 - разрез варианта выполнения нагревателя с ограниченной температурой с наружным проводником, имеющим ферромагнитную секцию и неферромагнитную секцию, размещенную внутри кожуха; фиг. 12, 13 и 14 - разрез варианта выполнения нагревателя с ограниченной температурой с ферромагнитным наружным проводником; фиг. 15, 16 и 17 - разрез варианта выполнения нагревателя с ограниченной температурой с наружным проводником; фиг. 18, 19, 20 и 21 - разрез варианта выполнения нагревателя с ограниченной температурой; фиг. 22, 23 и 24 - разрез варианта выполнения нагревателя с ограниченной температурой с сетью передачи данных общего назначения с проходящей через покрывающий слой секцией и секцией нагревания; фиг. 25 - вариант выполнения соединительной секции композитного электрического проводника; фиг. 26 - вариант выполнения соединительной секции композитного электрического проводника; фиг. 27 - вариант выполнения соединительной секции композитного электрического проводника; фиг. 28 - вариант выполнения нагревателя с изолированным проводником; фиг. 29 - вариант выполнения нагревателя с изолированным проводником; фиг. 30 - вариант выполнения нагревателя с изолированным проводником, расположенным в канале; фиг. 31 - вариант выполнения нагревателя с ограниченной температурой с низкотемпературным ферромагнитным наружным проводником; фиг. 32 - вариант выполнения нагревателя с ограниченной температурой типа проводник в канале; фиг. 33 - разрез варианта выполнения нагревателя с ограниченной температурой типа проводник в канале; фиг. 34 - разрез варианта выполнения нагревателя с ограниченной температурой типа изолированный проводник в канале; фиг. 35 и 36 - разрез варианта выполнения нагревателя с ограниченной температурой, который включает изолированный проводник; фиг. 37 и 38 - разрез варианта выполнения нагревателя с ограниченной температурой, который включает изолированный проводник; фиг. 39 - вариант выполнения нагревателя с ограниченной температурой с возвратом тока через пласт; фиг. 40 - вариант выполнения трехфазного нагревателя с ограниченной температурой с соединением по току через пласт; фиг. 41 - вариант выполнения, показанный на фиг. 40, на виде сверху; фиг. 42 - зависимость электрического сопротивления от температуры при различных величинах подаваемого электрического тока для стержня из нержавеющей стали 446; фиг. 43 - зависимость электрического сопротивления от температуры при различных величинах подаваемого электрического тока для нагревателя с ограниченной температурой; фиг. 44 - зависимость мощности от температуры при различных величинах подаваемого электрического тока для нагревателя с ограниченной температурой; фиг. 45 - зависимость электрического сопротивления от температуры при различных величинах подаваемого электрического тока для нагревателя с ограниченной температурой; фиг. 46 - зависимость величины толщины скин-слоя от температуры для сплошного стержня из нержавеющей стали 410 диаметром 1 дюйм (25,4 мм) при различных величинах подаваемого переменного электрического тока; фиг. 47 - зависимость температуры от времени для нагревателя с ограниченной температурой; фиг. 48 - зависимость температуры от времени в логарифмическом масштабе для стержня из нержавеющей стали 410 и стержня из нержавеющей стали 304; фиг. 49 - температура центрального проводника нагревателя типа проводник в канале в зависимости от глубины пласта для нагревателя с температурой Кюри с отношением уменьшения 2:1; фиг. 50 - соответствующий поток тепла нагревателя через пласт для отношения уменьшения 2:1-2 009586 вместе с профилем содержания нефти в сланце; фиг. 51 - температура нагревателя в зависимости от глубины пласта для отношения уменьшения 3:1; фиг. 52 - соответствующий поток тепла нагревателя через пласт для отношения уменьшения 3:1 вместе с профилем содержания нефти в сланце; фиг. 53 - температура нагревателя в зависимости от глубины пласта для отношения уменьшения 4:1. Хотя возможны различные модификации и альтернативные варианты выполнения, на чертежах показаны специальные варианты выполнения в качестве примеров, описание которых приводится ниже. Чертежи могут не соответствовать масштабу. Однако следует отметить, что чертежи и их подробное описание не должны ограничивать данное изобретение раскрытыми частными вариантами выполнения,а, наоборот, изобретение охватывает все модификации, эквиваленты и альтернативы, входящие в идею и объем данного изобретения, заданные прилагаемой формулой изобретения. Осуществление изобретения Последующее описание относится, в целом, к системам и способам для обработки содержащего углеводороды пласта (например, пласта, содержащего уголь (включая лигнит, сапропелит и т.д.), нефтеносный сланец, углистый сланец, шунгиты, кероген, битумы, нефть, кероген и нефть в матрице с низкой проницаемостью, тяжелые углеводороды, асфальтиты, природные минеральные воски, пласты, в которых кероген блокирует добычу других углеводородов, и т.д.). Такие пласты можно обрабатывать для получения углеводородных продуктов относительно высокого качества, водорода и других продуктов."Углеводороды" обозначают, в целом, молекулы, образованные, главным образом, атомами углерода и водорода. Углеводороды могут содержать также другие элементы, такие как, но не ограничиваясь этим, галогены, металлические элементы, азот, кислород и/или сера. Углеводороды могут быть, но не ограничиваясь этим, керогеном, битумом, пиробитумом, нефтью, природными минеральными восками и асфальтитами. Углеводороды могут быть расположены внутри или смежно с минеральными матрицами внутри земли. Матрицы могут включать, но не ограничиваясь этим, осадочную породу, пески, силицилиты, карбонаты, диатомиты и другие пористые среды. "Углеводородные флюиды" являются флюидами,которые содержат углеводороды. Углеводородные флюиды могут включать, увлекать или быть увлеченными неуглеводородными флюидами (например, водородом ("H2"), азотом ("N2"), моноксидом углерода,диоксидом углерода, сероводородом, водой и аммиаком)."Пласт" включает один или более содержащих углеводороды слоев, один или более неуглеводородных слоев, покрывающий слой и/или подстилающий слой. "Покрывающий слой" и/или "подстилающий слой" включают один или более типов непроницаемых материалов. Например, покрывающий слой и/или подстилающий слой могут включать скальную породу, сланец, аргиллит или влажный/плотный карбонат(т.е. непроницаемый карбонат без углеводородов). В некоторых вариантах выполнения процесса внутрипластовой конверсии покрывающий слой и/или подстилающий слой могут включать содержащий углеводороды слой или содержащие углеводороды слои, которые являются относительно непроницаемыми и не подвергаются воздействию температуры во время процесса конверсии, который приводит к значительному изменению характеристик содержащих углеводороды слоев покрывающего слоя и/или подстилающего слоя. Например, подстилающий слой может содержать сланец или аргиллит. В некоторых случаях покрывающий слой и/или подстилающий слой могут быть в некоторой степени проницаемыми. Понятия "флюиды пласта" или "добываемые флюиды" относятся к флюидам, удаляемым из содержащего углеводороды пласта, и могут включать флюид пиролиза, синтез-газ, подвижный углеводород и воду (пар). Понятие "подвижный флюид" относится к флюидам внутри пласта, которые способны течь в результате тепловой обработки пласта. Флюиды пласта могут включать углеводородные флюиды, а также неуглеводородные флюиды."Источником тепла" является любая система для обеспечения нагревания по меньшей мере части пласта, по существу, посредством переноса тепла с помощью проводимости и/или излучения."Нагреватель" является любой системой для генерирования тепла в скважине или в зоне вблизи скважины. Нагреватели могут быть, но не ограничиваясь этим, электрическими нагревателями, горелками, камерами сгорания, которые вступают в реакцию с материалом внутри пласта или же добываемым из пласта (например, природные распределенные топки), и/или их комбинациями. "Блок источников тепла" обозначает несколько источников тепла, которые образуют группу, которая повторяется для создания схемы источников тепла внутри пласта. Понятие "скважина" относится к отверстию в пласте, выполненному посредством бурения или ввода канала в пласт. Скважина может иметь, по существу, круговое поперечное сечение или другие формы поперечного сечения (например, круговые, овальные, прямоугольные, треугольные, щелевые или другие регулярные или нерегулярные формы). В данном описании понятия "колодец" и "отверстие", когда они относятся к отверстию в пласте, могут использоваться с заменой на понятие "скважина"."Изолированный проводник" относится к любому удлиненному материалу, который способен проводить электричество и который покрыт, частично или полностью, электрически изоляционным материалом. Понятие "самоуправление" относится к управлению выходом нагревателя без внешнего управления любого типа."Флюиды пиролизации" или "продукты пиролиза" относятся к флюидам, добываемым, по сущест-3 009586 ву, во время пиролиза углеводородов. Флюиды, добываемые за счет реакций пиролиза, могут смешиваться с другими флюидами в пласте. Смесь считается флюидом пиролизации или продуктом пиролиза. В данном описании "зона пиролиза" относится к объему пласта (например, относительно проницаемого пласта, такого как пласт битуминозных песков), который вовлекается в реакцию или вступает в реакцию с образованием флюида пиролизации."Конденсируемые углеводороды" являются углеводородами, которые конденсируются при 25 С и абсолютном давлении в 1 атм. Конденсируемые углеводороды могут включать смесь углеводородов,имеющих число атомов углерода более 4. "Неконденсируемые углеводороды" являются углеводородами,которые не конденсируются при 25 С и абсолютном давлении в 1 атм. Неконденсируемые углеводороды могут включать смесь углеводородов, имеющих число атомов углерода менее 5. Углеводороды в пластах можно обрабатывать различными способами для получения многих различных продуктов. В некоторых вариантах выполнения такие пласты можно обрабатывать несколькими стадиями. На фиг. 1 показаны несколько стадий нагревания содержащего углеводороды пласта. На фиг. 1 показан также пример добычи (в баррелях нефтяного эквивалента на тонну) (по оси у) флюидов пласта из содержащего углеводороды пласта в зависимости от температуры (в С) (по оси х) пласта (при нагревании пласта с относительно низкой скоростью). Десорбция метана и испарение воды происходят во время стадии 1 нагревания. Нагревание пласта на стадии 1 можно осуществлять как можно быстрее. Например, при первоначальном нагревании содержащего углеводороды пласта углеводороды в пласте могут десорбировать адсорбированный метан. Десорбированный метан можно добывать из пласта. Если нагревать далее содержащий углеводороды пласт,то может испаряться вода, содержащаяся внутри содержащего углеводороды пласта. Вода может занимать в некоторых содержащих углеводороды пластах между около 10 и около 50% объема пор в пласте. В других пластах вода может занимать большие или меньшие части объема пор. Вода обычно испаряется в пласте при температурах между около 160 и около 285 С и при давлениях от около 6 до около 70 бар(абсолютное значение). В некоторых вариантах выполнения испаряемая вода может вызывать изменение смачиваемости в пласте и/или повышение давления пласта. Изменения смачиваемости или повышенное давление могут влиять на реакции пиролиза или другие реакции в пласте. В некоторых вариантах выполнения испаренную воду можно добывать из пласта. В других вариантах выполнения испаренную воду можно использовать для выделения и/или перегонки с водяным паром в скважине или вне скважины. Удаление воды и увеличение объема пор в пласте может увеличивать пространство для хранения углеводородов внутри объема пор. После стадии 1 нагревания пласт можно нагревать далее, так что температура внутри пласта достигает (по меньшей мере) начальной температуры пиролиза (например, температуры на нижнем конце диапазона температур, показанного в качестве стадии 2). В течение стадии 2 может происходить пиролиз углеводородов внутри пласта. Диапазон температур пиролиза может изменяться в зависимости от типа углеводородов внутри пласта. Диапазон температур пиролиза может включать температуры между около 250 и около 900 С. Диапазон температур пиролиза для добычи желаемых продуктов может простираться лишь в части полного диапазона температур пиролиза. В некоторых вариантах выполнения диапазон температур пиролиза для добычи желаемых продуктов может включать температуры между около 250 и около 400 С. Если температуру углеводородов в пласте медленно повышать в диапазоне температур от около 250 до около 400 С, то создание продуктов пиролиза может быть, по существу, завершено, когда температура приближается к 400 С. Нагревание содержащего углеводороды пласта с помощью нескольких источников тепла может создавать температурные градиенты вокруг источников тепла, которые медленно повышают температуру углеводородов в пласте в диапазоне температур пиролиза. В некоторых вариантах выполнения внутрипластовой конверсии углеводороды, подлежащие пиролизу, можно не подвергать медленному повышению температуры в диапазоне температур пиролиза от около 250 до около 400 С. Углеводороды в пласте можно нагревать до желаемой температуры (например, около 325 С). В качестве желаемых температур можно выбирать другие температуры. Наложение тепла из источников тепла может обеспечивать достижение желаемой температуры в пласте относительно быстро и эффективно. Ввод тепла в пласт из источников тепла можно регулировать для поддержания температуры в пласте, по существу, на желаемой температуре. Углеводороды можно поддерживать, по существу, на желаемой температуре, пока пиролиз не спадет, и при этом добыча желаемых флюидов из пласта становится неэкономичной. Флюиды пласта, включающие флюиды пиролиза, можно добывать из пласта. Флюиды пиролиза могут включать, но не ограничиваясь этим, углеводороды, водород, диоксид углерода, моноксид углерода, сероводород, аммиак, азот, воду и их смеси. При повышении температуры пласта количество конденсируемых углеводородов в добываемых флюидах пласта имеет тенденцию к понижению. При высоких температурах из пласта можно добывать, в основном, метан и/или водород. Если содержащий углеводороды пласт нагревать во всем диапазоне пиролиза, то из пласта можно добывать лишь небольшие количества водорода вблизи верхнего предела диапазона пиролиза. После истощения всего доступного водорода обычно происходит добыча минимального количества флюида из пласта. После пиролиза углеводородов большое количество углерода и некоторое количество водорода все-4 009586 еще присутствуют в пласте. Значительную часть остающегося углерода в пласте можно добывать из пласта в виде синтез-газа. Генерирование синтез-газа может происходить во время стадии 3, показанной на фиг. 1. Стадия 3 может включать нагревание содержащего углеводороды пласта до температуры, достаточной для обеспечения генерирования синтез-газа. Например, синтез-газ можно добывать внутри диапазона температур от около 400 до около 1200 С. Температура пласта, когда генерирующий синтез-газ флюид вводится в пласт, может определять состав синтез-газа, добываемого из пласта. Если генерирующий синтез-газ флюид вводится в пласт при температуре, достаточной для обеспечения генерирования синтез-газа, то внутри пласта может генерироваться синтез-газ. Генерированный синтез-газ можно удалять из пласта через эксплуатационную скважину или эксплуатационные скважины. Во время генерирования синтез-газа можно добывать большой объем генерированного синтез-газа. На фиг. 2 показана схема варианта выполнения части внутрипластовой системы конверсии для обработки содержащего углеводороды пласта. Источники 100 тепла могут быть расположены внутри по меньшей мере части содержащего углеводороды пласта. Источники 100 тепла могут обеспечивать нагревание по меньшей мере части содержащего углеводороды пласта. Энергия может подаваться к источникам 100 тепла по питающим линиям 102. Питающие линии могут иметь различную структуру в зависимости от типа источника тепла или источников тепла, используемых для нагревания пласта. Питающие линии для источников тепла могут передавать электрическую энергию для электрических нагревателей,могут транспортировать топливо для топок или же могут транспортировать теплообменную жидкость,которая циркулирует внутри пласта. Эксплуатационные скважины 104 можно использовать для удаления флюида из пласта. Флюид пласта, добываемый из эксплуатационных скважин 104, можно транспортировать через коллекторный трубопровод 106 к установкам 108 для обработки. Флюиды пласта можно добывать также из источников 100 тепла. Например, можно добывать флюид из источников 100 тепла для управления давлением внутри пласта вблизи источников тепла. Флюид, добываемый из источников 100 тепла, можно транспортировать через трубы или трубопроводы к коллекторному трубопроводу 106 или же добываемый флюид можно транспортировать через трубы или трубопровод непосредственно к установкам 108 обработки. Установки 108 обработки могут содержать разделительные блоки, блоки реакций, блоки повышения качества,топливные элементы, турбины, баки для хранения и другие системы и блоки для обработки добытых флюидов пласта. Система внутрипластовой конверсии для обработки углеводородов может содержать барьерные скважины 110. В некоторых вариантах выполнения барьеры можно использовать для воспрещения миграции флюидов (например, генерированных флюидов и/или подземных вод) в и/или из части пласта, в которой выполняется процесс внутрипластовой конверсии. Барьеры могут включать, но не ограничиваясь этим, естественно присутствующие части (например, покрывающий слой и/или подстилающий слой),замораживающие скважины, замороженные барьерные зоны, низкотемпературные барьерные зоны, цементированные стенки, серные скважины, водопонижающие скважины, нагнетательные скважины, барьер, образованный гелем, созданным в пласте, барьер, образованный посредством осаждения солей в пласте, барьер, образованный посредством реакции полимеризации в пласте, листов, введенных в пласт, или их комбинации. Как показано на фиг. 2, дополнительно к источникам 100 тепла, обычно одна или более эксплуатационных скважин 104 могут быть расположены внутри части содержащего углеводороды пласта. Флюиды пласта можно добывать из эксплуатационных скважин 104. В некоторых вариантах выполнения эксплуатационная скважина 104 может содержать источник тепла. Источник тепла может нагревать части пласта у или вблизи эксплуатационной скважины и обеспечивать удаления паровой фазы флюидов пласта. Необходимость выкачивания жидкостей с высокой температурой из эксплуатационной скважины можно уменьшить или исключить. Исключение или ограничение выкачивания жидкостей с высокой температурой может существенно снизить стоимость добычи. Обеспечение нагревания у или через эксплуатационную скважину может: (1) подавлять конденсацию и/или дефлегмацию добытого флюида, когда такой добытый флюид перемещается в эксплуатационной скважине вблизи покрывающего слоя, (2) увеличивать ввод тепла в пласт и/или (3) увеличивать проницаемость пласта у или вблизи эксплуатационной скважины. В некоторых вариантах выполнения процесса внутрипластовой конверсии количество тепла,подаваемого в эксплуатационные скважины, значительно меньше, чем количество тепла, подводимого к источникам тепла, которые нагревают пласт. Нагреватель с изолированным проводником может быть нагревательным элементом источника тепла. В одном варианте выполнения нагревателя с изолированным проводником нагреватель с изолированным проводником является кабелем или стержнем с минеральной изоляцией. Нагреватель с изолированным проводником можно помещать в отверстие в содержащем углеводороды пласте. Нагреватель с изолированным проводником можно помещать в необсаженное отверстие в содержащем углеводороды пласте. Помещение нагревателя с изолированным проводником в необсаженное отверстие в содержащем углеводороды пласте может обеспечивать передачу тепла от нагревателя в пласт с помощью излучения, а также проводимости. Использование необсаженного отверстия может облегчать, при необходимости,извлечение нагревателя из скважины. Использование необсаженного отверстия может значительно со-5 009586 кращать стоимость нагревания за счет устранения необходимости в части обсадной трубы, способной выдерживать условия высокой температуры. В некоторых вариантах выполнения нагревателя нагреватель с изолированным проводником можно помещать внутри обсадной трубы в пласте; его можно цементировать внутри пласта или же можно упаковывать в отверстии песком, гравием или другим наполнительным материалом. Нагреватель с изолированным проводником может опираться на опорный элемент, расположенный внутри отверстия. Опорный элемент может быть кабелем, стержнем или каналом(например, трубой). Опорный элемент может быть выполнен из металла, керамики, неорганического материала или их комбинаций. Части опорного элемента могут быть открыты для флюидов пласта и тепла во время использования, так что опорный элемент может быть химически устойчивым и теплоустойчивым. Хомуты, точечная сварка и другие типы соединений можно использовать для соединения нагревателя с изолированным проводником с опорным элементом в различных местах вдоль длины нагревателя с изолированным проводником. Опорный элемент может быть прикреплен к устью скважины на верхней поверхности пласта. В одном варианте выполнения нагревателя с изолированным проводником нагреватель с изолированным проводником выполнен с достаточной структурной прочностью, так что отпадает необходимость в опорном элементе. Во многих случаях нагреватель с изолированным проводником имеет некоторую гибкость для исключения повреждения вследствие теплового расширения во время нагревания или охлаждения. В некоторых вариантах выполнения нагреватели с изолированным проводником могут быть расположены в скважинах без опорных элементов и/или центраторов. Нагреватель с изолированным проводником без опорных элементов и/или центраторов может иметь подходящую комбинацию температурной и коррозионной стойкости, прочности на ползучесть, длину, толщину (диаметр) и металлический состав для исключения выхода из строя изолированного проводника во время использования. Один или более нагревателей с изолированным проводником можно размещать внутри отверстия в пласте для образования нагревателя или нагревателей. Электрический ток можно пропускать через каждый нагреватель с изолированным проводником в отверстии для нагревания пласта. В качестве альтернативного решения электрический ток можно пропускать через выбранные нагреватели с изолированным проводником в отверстии. Не используемые проводники могут быть запасными нагревателями. Нагреватели с изолированным проводником могут быть электрически соединены с источником энергии любым обычным образом. Каждый конец нагревателя с изолированным проводником может быть соединен с подводящим кабелем, который проходит через устье скважины. Такая конфигурация обычно имеет изгиб на 180 (изгиб в виде шпильки для волос) или поворот, расположенный у дна нагревателя. Нагреватель с изолированным проводником, который включает изгиб или поворот на 180, не требует нижнего окончания, однако, изгиб или поворот на 180 может означать электрическое и/или структурное ослабление нагревателя. Нагреватели с изолированным проводником можно электрически соединять друг с другом последовательно, параллельно или комбинированно последовательно и параллельно. В некоторых вариантах выполнения нагревателей электрический ток можно пропускать через проводник нагревателя с изолированным проводником и возвращать через оболочку нагревателя с изолированным проводником. В варианте выполнения нагревателя, показанном на фиг. 3, три нагревателя 112 электрически соединены по схеме трехфазной звезды с источником питания. Для нагревателей с изолированным проводником может не требоваться соединения на дне. В качестве альтернативного решения все три проводника трехфазного контура могут быть соединены друг с другом вблизи дна отверстия нагревателя. Соединение может быть выполнено непосредственно на концах нагревательных секций нагревателей с изолированным проводником или на концах холодных штырьков, соединенных с нагревательными секциями,у дна нагревателей с изолированным проводником. Нижние соединения могут быть выполнены с помощью заполненных изолятором и герметизированных корпусов или заполненных эпоксидной смолой корпусов. Изолятор может иметь тот же состав, что и изолятор, используемый для электрической изоляции. Три нагревателя с изолированным проводником, показанные на фиг. 3, могут быть соединены с опорным элементом 114 с использованием центраторов 116. В качестве альтернативного решения три нагревателя с изолированным проводником могут быть прикреплены непосредственно к опорной трубе с использованием металлических хомутов. Центраторы 116 могут удерживать положение или воспрещать перемещения нагревателей 112 с изолированным проводником на опорном элементе 114. Центраторы 116 могут быть выполнены из металла, керамики или их комбинаций. Металл может быть нержавеющей сталью или любым другим типом металла, способного выдерживать коррозийные и горячие условия. В некоторых вариантах выполнения центраторы 116 могут быть изогнутыми металлическими полосами,приваренными к опорному элементу на расстоянии приблизительно менее 6 м друг от друга. Керамика,используемая в центраторах 116, может быть, но не ограничиваясь этим, Al2O3, MgO или другим изолятором. Центраторы 116 могут удерживать положение нагревателей 112 с изолированным проводником на опорном элементе 114, так что воспрещается перемещение нагревателей с изолированным проводником при рабочих температурах нагревателей с изолированным проводником. Нагреватели 112 с изолированным проводником могут иметь также некоторую гибкость для выдерживания расширения опорного элемента 114 во время нагревания. Опорный элемент 114, нагреватель 112 с изолированным проводником и центраторы 116 могут-6 009586 быть расположены в отверстии 118 в углеводородном слое 120. Нагреватели 112 с изолированным проводником могут быть соединены с нижним соединением 122 проводников с использованием переходного проводника 124 с холодными штырьками. Нижнее соединение 122 проводников может электрически соединять друг с другом нагреватели 112 с изолированным проводником. Нижнее соединение 122 проводников может включать материалы, которые являются электрически проводящими и не плавятся при температурах, имеющихся в отверстии 118. Переходный проводник 124 с холодными штырьками может быть нагревателем с изолированным проводником, имеющим более низкое электрическое сопротивление, чем нагреватель 112 с изолированным проводником. Подводящий проводник (проводники) 126 может быть соединен с устьем 128 скважины для подачи электрической энергии в нагреватель 112 с изолированным проводником. Подводящий проводник 126 может быть изготовлен из проводника с относительно небольшим электрическим сопротивлением, так что при прохождении электрического тока через подводящий проводник 126 образуется относительно мало тепла. В некоторых вариантах выполнения подводящий проводник 126 является многожильным медным кабелем с резиновой или полимерной изоляцией. В некоторых вариантах выполнения подводящий проводник может быть проводником с минеральной изоляцией и медным сердечником. Подводящий проводник 126 может быть соединен с устьем 128 скважины на поверхности 130 через уплотнительный фланец, расположенный между покрывающим слоем 132 и поверхностью 130. Уплотнительный фланец может воспрещать выход флюида из отверстия 118 на поверхность 130. В некоторых вариантах выполнения усиливающий материал 134 может защищать обсадную трубу 136 в покрывающем слое от покрывающего слоя 132. В одном варианте выполнения обсадная труба в покрывающем слое является трубой диаметром 7,6 см (3 дюйма) технологического режима 40. Усиливающий материал 134 может включать, например, портландцемент класса G и Н, смешанный с порошком из диоксида кремния для улучшения высокотемпературных характеристик, шлаком или порошком из диоксида кремния и/или их смесью (например, 1,58 г на кубический сантиметр шлака/порошка диоксида кремния). В некоторых вариантах выполнения нагревателя усиливающий материал 134 проходит в радиальном направлении с шириной от около 5 до около 25 см. В некоторых вариантах выполнения усиливающий материал 134 может проходить в радиальном направлении с шириной от около 10 до около 15 см. В определенных вариантах выполнения один или более каналов могут быть предусмотрены для подачи дополнительных элементов (например, азота, диоксида углерода, восстанавливающих реагентов,таких как газ, содержащий водород, и т.д.) в отверстия пласта с целью выпуска флюидов и/или для управления давлением. Давления пласта обычно являются максимальными вблизи источников тепла. Может быть полезным предусмотрение оборудования для управления давлением в нагревателях. В некоторых вариантах выполнения добавление восстанавливающего реактива вблизи источника тепла помогает в обеспечении более благоприятных условий пиролиза (например, большего парциального давления водорода). Поскольку проницаемость и пористость имеют тенденцию к более быстрому увеличению вблизи источника тепла, то часто является оптимальным добавление восстанавливающего реактива вблизи источника тепла, так чтобы восстанавливающий реактив мог проще перемещаться в пласт. Канал 138, показанный на фиг. 3, может быть предусмотрен для добавления газа из источника 140 газа через клапан 142 и в отверстие 118. Канал 138 и клапан 144 можно использовать в разное время для стравливания давления и/или управления давлением вблизи отверстия 118. Следует отметить, что любой из указанных источников тепла может быть также снабжен каналами для подачи дополнительных компонентов, выпуска флюидов и/или управления давлением. Как показано на фиг. 3, опорный элемент 114 и подводящий проводник 126 могут быть соединены с устьем 128 скважины на поверхности 130 пласта. Поверхностный проводник 156 может охватывать усиливающий материал 134 и соединяться с устьем 128 скважины. Варианты выполнения поверхностного проводника 156 могут иметь наружный диаметр от около 10,16 до около 30,48 мм, например наружный диаметр около 22 см. В некоторых вариантах выполнения поверхностные проводники могут проходить на глубину от примерно 3 до примерно 515 м в отверстие в пласте. В качестве альтернативного решения поверхностный проводник может проходить на глубину примерно 9 м в отверстие. Электрический ток можно подавать из источника питания в нагреватель 112 с изолированным проводником для генерирования тепла. Например, можно подавать напряжение около 330 В и ток около 266 А в нагреватель 140 с изолированным проводником для генерирования около 1150 Вт/м в нагревателе 140 с изолированным проводником. Тепло, генерированное нагревателем с изолированным проводником, может нагревать по меньшей мере часть содержащего углеводороды пласта. В некоторых вариантах выполнения тепло может передаваться в пласт, по существу, посредством излучения. Некоторое количество тепла может передаваться посредством проводимости или конвекции тепла за счет газов, присутствующих в отверстии. Отверстие может быть необсаженным отверстием. Необсаженное отверстие устраняет расходы, связанные с тепловым присоединением нагревателя к пласту, расходы, связанные с обсадной трубой, и/или расходы, связанные с упаковкой нагревателя внутри отверстия. Дополнительно к этому, перенос тепла за счет излучения является обычно более эффективным, чем за счет проводимости, так что нагреватели могут работать с более низкой температурой в открытой скважине. Перенос тепла за счет проводимости во время-7 009586 начальной работы нагревателя можно увеличить за счет добавки газа в отверстие. Давление газа можно поддерживать на уровне до около 27 бар (абсолютное значение). Газ может включать, но не ограничиваясь этим, диоксид углерода, водород, пар и/или гелий. Нагреватель с изолированным проводником в открытой скважине может предпочтительно свободно расширяться или сжиматься в соответствии с тепловым расширением и сжатием. Нагреватель с изолированным проводником можно предпочтительно удалять или передислоцировать из открытой скважины. На фиг. 4 показан вариант выполнения нагревателя типа проводник в канале, который может нагревать содержащий углеводороды пласт. Проводник 146 может быть расположен в канале 138. Проводник 146 может быть стержнем или каналом из электрически проводящего материала. На обоих концах проводника 146 могут иметься секции 148 низкого сопротивления для генерирования меньшего количества тепла в этих секциях. Секция 148 низкого сопротивления может быть выполнена с большей площадью поперечного сечения проводника 146 в этой секции, или же секции могут быть выполнены из материала,имеющего меньшее сопротивление. В некоторых вариантах выполнения секция 148 низкого сопротивления включает проводник низкого сопротивления, соединенный с проводником 146. В некоторых вариантах выполнения нагревателей проводники 146 могут быть стержнями из нержавеющей стали 316 Н, 347 Н,304 Н или 310 Н с диаметром около 2 см. В некоторых вариантах выполнения нагревателей проводники являются трубками из нержавеющей стали 316, 304 или 310 с диаметрами около 2,5 см. Можно использовать стержни и трубки с большими или меньшими диаметрами для обеспечения желаемого нагревания пласта. Диаметр и/или толщину стенки проводника 146 можно изменять вдоль длины проводника для обеспечения различных скоростей нагревания в разных частях проводника. Канал 138 может быть выполнен из электрически проводящего материала. Например, канал 138 может быть трубой режима 40 с диаметром 7,6 см, изготовленной из нержавеющей стали 347 Н, 316 Н, 304 Н или 310 Н. Канал 138 может быть расположен в отверстии 118 в углеводородном слое 120. Отверстие 118 имеет диаметр, обеспечивающий размещение канала 138. Диаметр отверстия может составлять от около 10 до около 22 см. Большие или меньшие диаметры отверстий можно использовать для размещения особых каналов или конструкций. Проводник 146 может быть расположен по центру канала 138 с помощью центраторов 150. Центратор 150 может электрически изолировать проводник 146 от канала 138. Центратор 150 может воспрещать перемещения и правильно располагать проводник 146 внутри канала 138. Центратор 150 может быть выполнен из керамического материала или комбинации керамического и металлического материалов. Центраторы 150 могут воспрещать деформацию проводника 146 в канале 138. Центраторы 150 могут быть расположены на расстоянии друг от друга между примерно 0,1 и примерно 3 м вдоль проводника 146. Вторая секция 148 низкого сопротивления проводника 146 может соединять проводник 146 с устьем 128 скважины, как показано на фиг. 4. Электрический ток можно подавать в проводник 146 из питающего кабеля 152 через секцию 148 низкого сопротивления проводника 146. Электрический ток может проходить из проводника 146 через ползунок 154 в канал 138. Канал 138 может быть электрически изолированным от обсадной трубы 136 покрывающего слоя и от устья 1128 скважины для возврата электрического тока в питающий кабель 152. Тепло может генерироваться в проводнике 146 и канале 138. Генерированное тепло может излучаться внутри канала 138 и отверстия 118 для нагревания по меньшей мере части углеводородного слоя 120. Например, в проводник 146 и канал 138 нагреваемой секции длиной 229 м(750 футов) можно подавать напряжение около 480 В и ток около 549 А для генерирования мощности около 1150 Вт на 1 м проводника 146 и канала 138. В покрывающем слое 132 может быть расположена обсадная труба 136 покрывающего слоя. Обсадная труба 136 покрывающего слоя может быть в некоторых вариантах выполнения окружена материалами, которые воспрещают нагревание покрывающего слоя 132. В обсадной трубе 136 покрывающего слоя может быть расположена секция 148 низкого сопротивления проводника 146. Секция 148 низкого сопротивления проводника 146 может быть выполнена, например, из меди, наваренной на углеродистую сталь. Секция 148 низкого сопротивления может иметь диаметр между около 2 и около 5 см или же, например, диаметр около 4 см. Секция 148 низкого сопротивления проводника 146 может быть расположена по центру обсадной трубы 136 покрывающего слоя с использованием центраторов 150. Центраторы 150 могут быть расположены с интервалами от примерно 6 до примерно 12 м или же, например, примерно 9 м вдоль секции 148 низкого сопротивления проводника 146. В одном варианте выполнения нагревателя секция 148 низкого сопротивления проводника 146 соединена с проводником одним или более местами сварки. В других вариантах выполнения нагревателя секции низкого сопротивления могут свинчиваться, свинчиваться и свариваться или другим образом соединяться с проводником. Секция 148 низкого сопротивления может генерировать немного и/или не генерировать тепло в обсадной трубе 136 покрывающего слоя. Между обсадной трубой 136 покрывающего слоя и отверстием 118 может быть расположен упаковочный материал 155. Упаковочный материал 155 может воспрещать прохождение флюидов из отверстия 118 к поверхности 130. В одном варианте выполнения нагревателя обсадная труба 136 покрывающего слоя является трубой из нержавеющей стали режима 40 с диаметром 7,6 см. В некоторых вариантах выполнения обсадная труба 136 покрывающего слоя может быть зацементирована в покрывающем слое. Усиливающий материал-8 009586 134 может быть теплостойким цементом, таким как 40% пудра двуокиси кремния, смешанная с портландцементом класса I. Усиливающий материал 134 может проходить в радиальном направлении с шириной от около 5 до около 25 см. Усиливающий материал 134 может быть также выполнен из материала,выполненного с возможностью воспрещения прохождения тепла в покрывающий слой 132. В других вариантах выполнения нагревателя обсадная труба 136 покрывающего слоя может быть не зацементирована в пласт. Наличие нецементированной обсадной трубы покрывающего слоя может облегчать извлечение канала 138, если возникнет необходимость удаления. Поверхностный проводник 156 может соединяться с устьем 128 скважины. Поверхностный проводник 156 может иметь диаметр от около 10 до около 30 см или же, в некоторых вариантах выполнения,диаметр около 22 см. Электрически изолирующие уплотнительные фланцы могут механически соединять секцию 148 низкого сопротивления проводника 146 с устьем 128 скважины и электрически соединять секцию 148 низкого сопротивления с питающим кабелем 152. Электрически изолирующие уплотнительные фланцы могут соединять питающий кабель 152 с устьем 128 скважины. Например, питающий кабель 152 может быть медным кабелем, проводом или другим удлиненным элементом. Питающий кабель 152 может включать любые материалы, имеющие, по существу, низкое сопротивление. Питающий кабель можно соединять с помощью зажима с нижней частью секции низкого сопротивления проводника для выполнения электрического контакта. В одном варианте выполнения тепло может генерироваться в канале 138 или с помощью него. От приблизительно 10 до приблизительно 40% или же, например, около 20% полного тепла, генерируемого нагревателем, может генерироваться в канале 138 или с помощью него. Как проводник 146, так и канал 138 могут быть выполнены из нержавеющей стали. Размеры проводника 146 и канала 138 можно выбирать так, чтобы проводник мог рассеивать тепло в диапазоне от примерно 650 до 1650 Вт/м. По существу, равномерное нагревание содержащего углеводороды пласта можно обеспечивать вдоль канала 138 длиной более 300 м и даже более 600 м. Может быть предусмотрен канал 158 для добавления газа из источника 140 газа через клапан 142 в отверстие 118. В усиливающем материале 134 предусмотрено отверстие для обеспечения прохождения газа в отверстие 118. Канал 158 и клапан 142 можно использовать в различное время для стравливания давления и/или управления давлением вблизи отверстия 118. Следует отметить, что любой из описанных здесь источников тепла может быть снабжен каналами для подачи дополнительных компонентов, выпуска флюидов и/или управления давлением. Тепло можно генерировать внутри открытой скважины с помощью нагревателя типа проводник в канале. Генерированное тепло может нагревать посредством излучения часть содержащего углеводороды пласта вблизи нагревателя типа проводник в канале. В меньшей степени за счет проводимости газа может нагреваться часть пласта вблизи нагревателя типа проводник в канале. Использование открытой скважины сокращает расходы на обсадную трубу и упаковку, связанные с наполнением отверстия материалом для обеспечения переноса тепла за счет проводимости между изолированным проводником и пластом. Дополнительно к этому, перенос тепла за счет излучения может быть более эффективным, чем перенос тепла за счет проводимости в пласте, так что нагреватели могут работать при более низкой температуре при использовании переноса тепла за счет излучения. Работа при более низкой температуре продлевает срок службы нагревателя и/или уменьшает стоимость материала, необходимого для изготовления нагревателя. В некоторых вариантах выполнения нагреватели могут содержать выключатели (например, предохранители и/или термостаты), которые отключают электропитание от нагревателя или частей нагревателя, когда в нагревателе достигается определенное состояние. В определенных вариантах выполнения можно использовать нагреватель с ограниченной температурой для обеспечения нагревания содержащего углеводороды пласта. Нагревателем с ограниченной температурой обычно называют нагреватель, который регулирует выход тепла (например, уменьшает выход тепла) при превышении заданной температуры без использования внешних управляющих устройств, таких как температурный контроллер, регуляторы мощности и т.д. Нагреватели с ограниченной температурой могут быть электрическими резистивными нагревателями переменного тока. Нагреватели с ограниченной температурой могут быть более надежными, чем другие нагреватели. Нагреватели с ограниченной температурой могут быть менее склонными к разрушению или выходу из строя из-за горячих участков в пласте. В некоторых вариантах выполнения нагреватели с ограниченной температурой позволяют, по существу, равномерно нагревать пласт. В некоторых вариантах выполнения нагреватели с ограниченной температурой позволяют более эффективно нагревать пласт за счет работы при более высокой средней температуре по всей длине нагревателя. Нагреватель с ограниченной температурой может работать при более высокой средней температуре по всей длине нагревателя, поскольку нет необходимости уменьшать мощность, подаваемую ко всему нагревателю (например, по всей длине нагревателя), как в случае обычных нагревателей, если температура в любой точке нагревателя превосходит или приближается к максимально допустимой рабочей температуре нагревателя. Части нагревателя с ограниченной температурой, приближающиеся к температуре Кюри нагревателя, могут автоматически уменьшать выход тепла в этих частях, когда достигается предельная температура нагревателя, или при приближении к ней. Выход тепла может автомати-9 009586 чески уменьшаться за счет изменений электрических свойств (например, электрического сопротивления) частей нагревателя с ограниченной температурой при выбранной температуре или вблизи нее. Уменьшенный выход тепла может быть локальным действием части нагревателя, которая имеет выбранную температуру или приближается к ней. Части нагревателя, которые имеют температуру ниже выбранной температуры, могут иметь большой выход тепла, в то время как части нагревателя, которые имеют выбранную температуру или приближаются к ней, могут иметь пониженный выход тепла. Таким образом,можно подавать большую мощность в нагреватель с ограниченной температурой во время большей части процесса нагревания. В контексте систем, устройств и способов с пониженным выходом тепла понятие "автоматически" означает, что такие системы, устройства и способы действуют определенным образом без использования внешнего управления (например, внешних контроллеров, таких как контроллер с температурным датчиком и контуром обратной связи). Например, система, включающая нагреватели с ограниченной температурой, может сначала обеспечивать первый выход тепла, а затем обеспечивать уменьшенный выход тепла вблизи, в точке Кюри или при ее превышении электрически резистивной частью нагревателя, когда в нагреватель с ограниченной температурой подается переменный ток. Нагреватели с ограниченной температурой могут иметь конфигурацию и/или могут включать материалы, которые обеспечивают свойства автоматического ограничения температуры нагревателя при определенных температурах. Например, в вариантах выполнения нагревателя с ограниченной температурой можно использовать ферромагнитные материалы. Ферромагнитные материалы могут самостоятельно ограничивать температуру при температуре Кюри материала или вблизи нее для обеспечения уменьшенного выхода тепла при температуре Кюри или вблизи нее, когда через материал пропускается переменный ток. В некоторых вариантах выполнения ферромагнитные материалы могут быть соединены с другими материалами (например, неферромагнитными материалами и/или материалами с высокой проводимостью) для обеспечения различных электрических и/или механических свойств. Некоторые части нагревателя с ограниченной температурой могут иметь меньшее сопротивление(например, обусловленное другими геометрическими размерами, и/или за счет использования различных ферромагнитных и неферромагнитных материалов), чем другие части нагревателя с ограниченной температурой. Наличие частей нагревателя с ограниченной температурой с разными материалами и/или размерами может обеспечивать выбор желаемого выхода тепла для каждой части нагревателя. Использование ферромагнитных материалов в нагревателях с ограниченной температурой может быть менее дорогим и более надежным, чем использование выключателей в нагревателях с ограниченной температурой. Температура Кюри является температурой, выше которой магнитный материал (например, ферромагнитный материал) теряет свои магнитные свойства. Дополнительно к потере магнитных свойств выше температуры Кюри, ферромагнитный материал может начинать терять свои магнитные свойства, когда увеличивающийся электрический ток проходит через ферромагнитный материал. Нагреватель может содержать проводник, который работает как нагреватель с поверхностным эффектом, когда через проводник пропускается переменный ток. Поверхностный эффект ограничивает глубину проникновения тока внутрь проводника. Для ферромагнитных материалов поверхностный эффект(скин-эффект) определяется магнитной проницаемостью проводника. Относительная магнитная проницаемость ферромагнитных материалов обычно больше 1 и может быть больше 10, 100 и даже 1000. При повышении температуры ферромагнитного материала свыше температуры Кюри и/или при увеличении подаваемого электрического тока магнитная проницаемость ферромагнитного материала существенно уменьшается и глубина скин-слоя быстро увеличивается (например, обратно пропорционально квадратному корню магнитной проницаемости). Уменьшение магнитной проницаемости приводит к уменьшению сопротивления переменному току проводника вблизи, при или свыше температуры Кюри и/или при увеличении подаваемого электрического тока. Когда нагреватель получает электропитание из источника,по существу, неизменного тока, то части нагревателя, которые приближаются, достигли или превысили температуру Кюри, могут иметь уменьшенную рассеиваемую мощность. Секции нагревателя, которые не имеют температуру Кюри или не находятся вблизи нее, могут иметь преимущественно определяемое поверхностным эффектом нагревание, которое позволяет нагревателю иметь высокое рассеяние тепла. Нагреватели с температурой Кюри использовались в паяльном оборудовании, в нагревателях для медицинского применения и в нагревателях для печей (например, печей для приготовления пиццы). Некоторые из этих применений раскрыты в патентах США 5579575 (Ламом и др.), 5065501 (Хеншен и др.) и 5512732 (Ягник и др.). В патенте США 4849611 (Уитней и др.) раскрыто несколько дискретных,расположенных на расстоянии друг от друга нагревательных блоков, включающих реактивный компонент, резистивный нагревательный компонент и чувствительный к температуре компонент. Преимущество использования нагревателя с ограниченной температурой для нагревания содержащего углеводороды пласта может заключаться в том, что можно выбирать проводник, имеющий температуру Кюри в желаемом диапазоне рабочих температур. Желаемый рабочий диапазон может обеспечивать значительный ввод тепла в пласт при удерживании температуры нагревателя и другого оборудования ниже проектной температуры (т.е. ниже температуры, которая отрицательно воздействует на свойства, такие как коррозия, ползучесть и/или деформация). Свойства ограничения температуры нагревателя- 10009586 могут воспрещать перегрев или перегорание нагревателя вблизи "горячих участков" с низкой теплопроводностью в пласте. В некоторых вариантах выполнения нагреватель с ограниченной температурой способен выдерживать температуры свыше около 250, около 500, около 700, около 800, около 900 С или выше в зависимости от материалов, используемых в нагревателе. Нагреватель с ограниченной температурой может обеспечивать больший ввод тепла в слой, чем нагреватели с постоянной мощностью, поскольку нет необходимости в ограничении ввода энергии в нагреватель с ограниченной температурой с целью приспособления к зонам с низкой теплопроводностью,смежным с нагревателем. Например, в слое нефтеносного сланца в месторождении Грин Ривер имеется различие в теплопроводности, равное по меньшей мере 50%, между наименее богатыми слоями нефтеносных сланцев (менее около 0,04 л/кг) и наиболее богатыми слоями нефтеносных сланцев (более около 0,20 л/кг). При нагревании такого пласта значительно больше тепла может переноситься в пласт с помощью нагревателя с ограниченной температурой, чем с помощью нагревателя, который ограничен температурой в слоях с низкой теплопроводностью, которые могут иметь толщину лишь 0,3 мм. Поскольку нагреватели, используемые для нагревания углеводородных пластов, обычно имеют большую длину (например, более 10, 100 или 300 м), то большая часть длины нагревателя может работать ниже температуры Кюри, в то время как лишь небольшое число частей находится при температуре Кюри нагревателя или вблизи нее. Использование нагревателей с ограниченной температурой может обеспечивать эффективный перенос тепла в слой. Эффективный перенос тепла в слой позволяет уменьшить время, необходимое для нагревания пласта до желаемой температуры. Например, в нефтеносных сланцах Грин Ривер для пиролиза необходимо нагревание в течение от около 9,5 до около 10 лет при использовании расстояния 12 м между нагревательными скважинами с обычными нагревателями постоянной мощности. При том же расстояния между нагревателями нагреватели с ограниченной температурой могут обеспечивать больший средний выход тепла при одновременном удерживании температуры нагревательного оборудования ниже проектной предельной температуры оборудования. Пиролиз в пласте может происходить раньше при большем среднем выходе тепла, обеспечиваемом нагревателями с ограниченной температурой. Например, в нефтеносных сланцах Грин Ривер пиролиз может происходить после около 5 лет нагревания с использованием нагревателей с ограниченной температурой при расстоянии между нагревательными скважинами около 12 м. Нагреватели с ограниченной температурой противодействуют возникновению горячих участков вследствие неточных расстояний или неточного бурения, когда нагревательные скважины расположены слишком близко друг к другу. Нагреватели с ограниченной температурой можно с преимуществом использовать во многих других типах содержащих углеводороды пластов. Например, в битуминозных песках или в сравнительно проницаемых пластах, содержащих тяжелые углеводороды, можно использовать нагреватели с ограниченной температурой для обеспечения управляемого низкотемпературного выхода для уменьшения вязкости флюидов у или вблизи скважины или в пласте. Нагреватели с ограниченной температурой могут воспрещать избыточное образование кокса вследствие перегрева зоны в пласте вблизи скважины. Использование нагревателей с ограниченной температурой может исключить или уменьшить необходимость выполнения регистрации температуры и/или необходимость использования неподвижных термопар на нагревателях для наблюдения за возможным перегревом в горячих участках. Использование нагревателей с ограниченной температурой может исключить или уменьшить необходимость в дорогостоящих схемах управления температурой. Нагреватель с ограниченной температурой может допускать деформацию, если локальные перемещения скважины приводят к воздействию боковых напряжений на нагреватель, которые могут деформировать его форму. Места вдоль длины нагревателя, в которых скважина приближается или находится вблизи нагревателя, могут быть горячими участками, где стандартный нагреватель может перегреваться и, возможно, перегорать. Эти горячие участки могут понижать предел текучести металла, что приводит к разрушению или деформации нагревателя. Нагреватель с ограниченной температурой может быть сформирован с S-образными кривыми (или другими нелинейными формами), которые распределяют деформацию нагревателя с ограниченной температурой без выхода из строя нагревателя. В некоторых вариантах выполнения нагреватели с ограниченной температурой могут быть более экономичными в изготовлении, чем стандартные нагреватели. Типичные ферромагнитные материалы включают железо, углеродистую сталь или ферритную нержавеющую сталь. Эти материалы могут быть недорогими по сравнению с нагревательными сплавами на основе никеля (такими, как нихром, кантал и др.), обычно используемыми в нагревателях с изолированным проводником. В одном варианте выполнения нагревателя с ограниченной температурой нагреватель можно изготавливать с непрерывной длиной в виде нагревателя с изолированным проводником (например, кабеля с минеральной изоляцией) для понижения стоимости и повышения надежности. В некоторых вариантах выполнения нагреватель с ограниченной температурой можно размещать в нагревательной скважине с использованием буровой установки со смотанными в бухту монтажнокомпрессорными трубами. Нагреватель, который можно наматывать на барабан, можно изготавливать с использованием металла, такого как ферритная нержавеющая сталь (например, нержавеющая сталь 409),- 11009586 которая сваривается с использованием электрической резистивной сварки. Для формирования секции нагревателя металлическую полосу с валка пропускают через первый формирователь, где она формируется в трубу и затем сваривается в продольном направлении с использованием электрической резистивной сварки. Трубу пропускают через второй формирователь, где наносится проводящая полоса (например, медная полоса), вытягиваемая плотно на трубу через фильеру, и сваривается с использованием электрической резистивной сварки. Может быть образован кожух посредством продольной сварки опорного материала (например, стали, такой как 347 Н или 347 НН) над материалом проводящей полосы. Опорный материал может быть полосой, намотанной над материалом проводящей полосы. Секцию нагревателя,проходящую в покрывающем слое, можно выполнять аналогичным образом. В некоторых вариантах выполнения секция в покрывающем слое может быть выполнена с использованием неферромагнитного материала, такого как нержавеющая сталь 304 или нержавеющая сталь 316, вместо ферромагнитного материала. Нагревательная секция и секция покрывающего слоя могут быть соединены друг с другом с использованием стандартных технологий, таких как сварка встык с использованием орбитального сварочного аппарата. В некоторых вариантах выполнения материал секции покрывающего слоя (т.е. неферромагнитный материал) можно предварительно сваривать с ферромагнитным материалом перед прокаткой. Предварительная сварка может исключать необходимость отдельной стадии соединения (т.е. сварки встык). В одном варианте выполнения печной кабель (например, печной кабель, такой как печной кабельMGT 1000) можно протянуть через центр после формирования трубчатого нагревателя. Концевая шайба на гибком кабеле может быть приварена к трубчатому нагревателю для создания обратного пути для электрического тока. Трубчатый нагреватель, включая гибкий кабель, можно наматывать на барабан перед установкой в нагревательной скважине. В одном варианте выполнения нагреватель с ограниченной температурой можно устанавливать с использованием буровой установки со смотанными насосно-компрессорными трубами. В одном варианте выполнения нагреватель с температурой Кюри включает печной кабель внутри ферромагнитного канала (например, трубы режима 80 из нержавеющей стали 446 с диаметром 3/4 дюйма(19 мм. Ферромагнитный канал может быть плакирован медью или другим подходящим проводящим материалом. Ферромагнитный канал может быть размещен в допускающем деформацию канале или в стойком к деформации контейнере. Допускающий деформации канал может допускать продольную деформацию, радиальную деформацию или ползучесть. Допускающий деформации канал может поддерживать ферромагнитный канал и печной кабель. Допускающий деформации канал можно выбирать на основе стойкости к ползучести и/или коррозии при температуре Кюри или вблизи нее. В одном варианте выполнения допускающий деформации канал может быть трубой режима 80 из нержавеющей стали 347 Н с диаметром 1,5 дюйма (с наружным диаметром около 4,826 см) или трубой из нержавеющей стали 347 Н режима 160 с диаметром 1,5 дюйма (с наружным диаметром около 4,826 см). Диаметр и/или материалы допускающего деформации канала могут изменяться в зависимости от, например, характеристик пласта, подлежащего нагреванию, или желаемых характеристик выхода тепла нагревателя. В некоторых вариантах выполнения из кольцевого пространства между допускающим деформации каналом и плакированным ферромагнитным каналом можно удалять воздух. Пространство между допускающим деформации каналом и плакированным ферромагнитным каналом можно промывать сжатым инертным газом(например, гелием, азотом, аргоном или их смесями). В некоторых вариантах выполнения инертный газ может включать небольшое количество водорода для действия в качестве газопоглотителя для остаточного кислорода. Инертный газ может проходить вниз кольцевого пространства с поверхности, входить во внутренний диаметр ферромагнитного канала через небольшое отверстие вблизи дна нагревателя и протекать вверх внутри ферромагнитного канала. Удаление воздуха в кольцевом пространстве может уменьшать окисление материалов в нагревателе (например, покрытых никелем медных проводов печного кабеля) для обеспечения более длительного срока службы нагревателя, в частности, при высоких температурах. Теплопроводность между печным кабелем и ферромагнитным каналом и между ферромагнитным каналом и допускающим деформации каналом можно улучшить, когда инертный газ является гелием. Сжатый инертный газ в кольцевом пространстве может также обеспечивать дополнительную опору для допускающего деформации канала против высоких давлений пласта. Нагреватели с ограниченной температурой можно использовать для нагревания содержащих углеводороды пластов, включая, но не ограничиваясь этим, пласты нефтеносных сланцев, угольные пласты,пласты битуминозных песков и тяжелой вязкой нефти. Нагреватели с ограниченной температурой можно использовать для очистки загрязненной почвы. Нагреватели с ограниченной температурой можно также использовать в области очистки окружающей среды для испарения загрязнений почвы. Варианты выполнения нагревателей с ограниченной температурой можно использовать для нагревания флюидов в скважине или в подводном трубопроводе для исключения отложения парафинов или различных гидратов. В некоторых вариантах выполнения нагреватель с ограниченной температурой можно использовать для добычи из подземных пластов способом растворения (например, пласта нефтеносных сланцев или угольного пласта). В некоторых вариантах выполнения флюид (например, расплавленную соль) можно помещать в скважину и нагревать с помощью нагревателя с ограниченной температурой для воспрещения деформации и/или разрушения скважины. В некоторых вариантах выполнения нагреватель с ограни- 12009586 ченной температурой можно прикреплять к насосной штанге в скважине, или же он может быть частью самой насосной штанги. В некоторых вариантах выполнения нагреватели с ограниченной температурой можно использовать для нагревания зоны вблизи скважины для уменьшения вязкости нефти вблизи скважины во время добычи сырой нефти с высокой вязкостью и во время транспортировки нефти с высокой вязкостью к поверхности. В некоторых вариантах выполнения нагреватель с ограниченной температурой может обеспечивать газлифт вязкой нефти посредством снижения вязкость нефти без коксования нефти. Некоторые варианты выполнения нагревателей с ограниченной температурой можно использовать в химических или нефтеперерабатывающих процессах при повышенных температурах, которые требуют управления в узком температурном диапазоне для воспрещения нежелательных химических процессов или повреждений вследствие локальных повышенных температур. Некоторые применения могут включать,но не ограничиваясь этим, реакторные трубы, коксователи и перегонные башни. Нагреватели с ограниченной температурой можно также использовать в устройствах для контроля за загрязнением (например,каталитических преобразователях и окислителях) для обеспечения быстрого нагревания до управляемой температуры без сложных схем управления температурой. Дополнительно к этому, нагреватели с ограниченной температурой можно использовать при обработке продуктов питания для исключения повреждения продуктов питания при чрезмерных температурах. Нагреватели с ограниченной температурой можно также использовать при термообработке металлов (например, отпуске сварных соединений). Нагреватели с ограниченной температурой можно использовать также в устройствах для подогрева полов, в устройствах для прижигания и/или различных других устройствах. Нагреватели с ограниченной температурой можно использовать для пункционной биопсии для разрушения опухолей посредством повышения температуры в живом организме. Некоторые варианты выполнения нагревателей с ограниченной температурой можно применять в некоторых типах медицинских и/или ветеринарных устройств. Например, нагреватель с ограниченной температурой можно использовать для терапевтической обработки ткани человека или животного.Нагреватель с ограниченной температурой для медицинского или ветеринарного устройства может иметь ферромагнитный материал, включающий сплав палладия с медью с температурой Кюри около 50 С. Можно использовать высокую частоту (например, более 1 МГц) для питания относительно небольших нагревателей с ограниченной температурой для медицинского и/или ветеринарного применения. Ферромагнитный сплав, используемый в нагревателе с точкой Кюри, может определять температуру Кюри нагревателя. Данные о температуре Кюри для различных металлов приведены в "Справочнике Американского института физики", второе издание, McGraw-Hill, стр. 5-170 - 5-176. Ферромагнитный проводник может включать один или несколько ферромагнитных элементов (железо, кобальт и никель) и/или сплавов этих элементов. В некоторых вариантах выполнения ферромагнитные проводники могут включать сплавы железа с хромом, которые содержат вольфрам (например, НСМ 12 А и SAVE12 фирмыSumitomo Metals Co., Япония), и/или сплавы, которые содержат хром (например, сплавы железа с хромом, сплавы железа, хрома и вольфрама, сплавы железа, хрома и ванадия, сплавы железа, хрома и ниобия). Из трех ферромагнитных элементов железо имеет температуру Кюри около 770 С, кобальт имеет температуру Кюри около 1131 С и никель имеет температуру Кюри около 358 С. Сплав железа и кобальта имеет температуру Кюри выше температуры Кюри железа. Например, сплав железа с 2% кобальта имеет температуру Кюри около 800 С, сплав железа с 12% кобальта имеет температуру Кюри около 900 С, а сплав железа с 20% кобальта имеет температуру Кюри около 950 С. Сплав железа и никеля имеет температуру Кюри ниже температуры Кюри железа. Например, сплав железа с 20% никеля имеет температуру Кюри около 720 С, а сплав железа с 60% кобальта имеет температуру Кюри около 560 С. Некоторые не ферромагнитные элементы, используемые в виде сплавов, могут повышать температуру Кюри железа. Например, сплав железа с 5,9% ванадия имеет температуру Кюри около 815 С. Другие неферромагнитные материалы (например, углерод, алюминий, медь, кремний и/или хром) можно сплавлять с железом или другими ферромагнитными материалами для понижения температуры Кюри. Неферромагнитные материалы, которые повышают температуру Кюри, можно комбинировать с неферромагнитными материалами, которые понижают температуру Кюри, и сплавлять с железом или другими ферромагнитными материалами для создания материала с желаемой температурой Кюри и другими желаемыми физическими и/или химическими свойствами. В некоторых вариантах выполнения материал с температурой Кюри может быть бинарным соединением, таким как FeNi3 или Fe3Al. Магнитные свойства обычно ослабляются при приближении к температуре Кюри. В Справочнике для электрического нагревания в промышленности, С. James Erickson (IEEE Press, 1995) показана типичная кривая для 1% углеродистой стали (т.е. стали с 1 мас.% углерода). Потеря магнитной проницаемости начинается при температуре приблизительно свыше 650 С и становится полной при превышении температуры около 730 С. Таким образом, самоограничивающаяся температура может быть несколько ниже действительной температуры Кюри ферромагнитного проводника. Глубина скин-слоя для прохождения тока в 1% углеродистой стали составляет около 0,132 см при комнатной температуре и увеличивается до около 0,445 см при температуре около 720 С. При температурах от около 720 до около 730 С глубина скин-слоя резко увеличивается до свыше 2,5 см. Таким образом, вариант выполнения нагревателя с огра- 13009586 ниченной температурой с использованием 1% углеродистой стали самостоятельно ограничивает температуру между от около 650 до около 730 С. Глубина скин-слоя обычно задает эффективную глубину проникновения переменного тока в проводящий материал. Обычно плотность тока уменьшается экспоненциально в зависимости от расстояния от наружной поверхности до центра вдоль радиуса проводника. Глубина, при которой плотность тока приблизительно равна 1/е от плотности тока на поверхности, называется глубиной скин-слоя. Для сплошного цилиндрического стержня с диаметром, намного превышающим глубину проникновения, или для полых цилиндров с толщиной стенки, превышающей глубину проникновения, глубинаскин-слоя равна гдеобозначает глубину скин-слоя в дюймах;- удельное сопротивление при рабочей температуре (Ом/см);- относительную магнитную проницаемость иf - частоту (Гц). Уравнение 1 получено из Справочника для электрического нагревания в промышленности, С. JamesErickson (IEEE Press, 1995). Для большинства металлов удельное сопротивлениеувеличивается с увеличением температуры. Относительная магнитная проницаемость обычно изменяется с изменением температуры и тока. Можно использовать дополнительные уравнения для оценки изменения магнитной проницаемости и/или глубины скин-слоя в зависимости от температуры и/или тока. Зависимостьот тока вытекает из зависимостиот магнитного поля. Материалы, используемые в нагревателе с ограниченной температурой, можно выбирать для обеспечения желаемого отношения уменьшения. Отношение уменьшения для нагревателя с ограниченной температурой является отношением максимального сопротивления переменному току непосредственно ниже температуры Кюри к максимальному сопротивлению переменному току непосредственно выше температуры Кюри. Для нагревателей с ограниченной температурой можно выбирать отношения уменьшения, равные по меньшей мере 2:1, 3:1, 4:1, 5:1 или более. Выбранные отношения уменьшения могут зависеть от нескольких факторов, включая, но не ограничиваясь этим, тип пласта, в котором расположен нагреватель с ограниченной температурой (например, более высокие отношения уменьшения можно использовать для пласта нефтеносных сланцев с большими изменениями теплопроводности между богатыми и бедными слоями нефтеносных сланцев), и/или температурный предел для материалов, используемых в скважине (например, температурных пределов материалов нагревателя). В некоторых вариантах выполнения отношение уменьшения можно увеличивать посредством добавления меди или другого хорошего электрического проводника в ферромагнитный материал (например, добавления меди для понижения сопротивления выше температуры Кюри). Нагреватель с ограниченной температурой может обеспечивать минимальный выход тепла (т.е. минимальную выходную мощность) ниже температуры Кюри нагревателя. В некоторых вариантах выполнения минимальная выходная мощность может составлять по меньшей мере около 400, около 600, около 700, около 800 Вт/м или выше. Нагреватель с ограниченной температурой может уменьшать выход тепла над температурой Кюри. Уменьшенный выход тепла обычно значительно меньше выхода тепла ниже температуры Кюри. В некоторых вариантах выполнения уменьшенный выход тепла может быть меньше около 400, меньше около 200 Вт/м или может приближаться к 100 Вт/м. В некоторых вариантах выполнения нагреватель с ограниченной температурой может работать, по существу, независимо от тепловой нагрузки на нагреватель в определенном диапазоне рабочих температур. "Тепловая нагрузка" является скоростью переноса тепла с нагревательной системы в ее окружение. Следует отметить, что тепловая нагрузка может изменяться в зависимости от температуры окружения и/или теплопроводности окружения. В одном варианте выполнения нагреватель с ограниченной температурой может работать при температуре Кюри нагревателя или выше нее, так что рабочая температура нагревателя не изменяется более чем на около 1,5 С при уменьшении тепловой нагрузки на около 1 Вт/м вблизи части нагревателя. В некоторых вариантах выполнения рабочая температура нагревателя не изменяется более чем на около 1 С или не более чем на 0,5 С при уменьшении тепловой нагрузки на около 1 Вт/м. Сопротивление переменному току или выход тепла части нагревателя с ограниченной температурой может резко уменьшаться над температурой Кюри частично за счет эффекта Кюри. В некоторых вариантах выполнения величина сопротивления переменному току или выход тепла над или вблизи температуры Кюри меньше примерно половины величины сопротивления переменному току или выходу тепла в определенной точке ниже температуры Кюри. В некоторых вариантах выполнения выход тепла над или вблизи температуры Кюри может быть менее чем около 40, 30, 20, 15 или 10% выхода тепла в определенной точке ниже температуры Кюри (например, около 30, около 40, около 50 или около 100 С ниже температуры Кюри). В некоторых вариантах выполнения сопротивление переменному току над или вблизи температуры Кюри может уменьшаться на 80, 70, 60 или 50% от сопротивления переменному току в определенной точке ниже температуры Кюри (например, около 30, около 40, около 50 или около 100 С ниже температуры Кюри).- 14009586 В некоторых вариантах выполнения частоту переменного тока можно регулировать для изменения глубины скин-слоя ферромагнитного материала. Например, глубина скин-слоя 1% углеродистой стали при комнатной температуре составляет около 0,132 см при частоте 60 Гц, около 0,0762 см при частоте 180 Гц и около 0,046 см при частоте 400 Гц. Поскольку диаметр нагревателя обычно больше чем в 2 раза превышает глубину скин-слоя, то использование более высокой частоты (и тем самым нагревателя с меньшим диаметром) может уменьшать стоимость оборудования. При неизменных геометрических размерах более высокая частота приводит к более высокому отношению уменьшения. Отношение уменьшения при более высокой частоте можно вычислять посредством умножения отношения уменьшения при низкой частоте на квадратный корень из отношения высокой частоты к низкой частоте. В некоторых вариантах выполнения можно использовать частоту между около 100 и около 600 Гц. В некоторых вариантах выполнения можно использовать частоту между около 140 и около 200 Гц. В некоторых вариантах выполнения можно использовать частоту между около 400 и около 550 Гц. Для сохранения, по существу, неизменной глубины скин-слоя до достижения температуры Кюри нагревателя нагреватель может работать на низкой частоте, пока нагреватель холодный, и работать на более высокой частоте, когда нагреватель горячий. Однако предпочтительным является нагревание на частоте питающей линии, поскольку нет необходимости в дорогих компонентах (например, источниках питания с изменяемой частотой). Частота питающей линии является частотой подаваемого тока. Частота питающей линии обычно равна 60 Гц, но может составлять 50 Гц или равняться другим частотам в зависимости от источника (например, географического расположения) поставляемого тока. Более высокие частоты можно создавать с использованием коммерческого оборудования (например, полупроводниковых источников питания с изменяемой частотой). В некоторых вариантах выполнения электрическое напряжение и/или электрический ток можно регулировать для изменения глубины скин-слоя ферромагнитного материала. Меньшая глубина скин-слоя позволяет использовать нагреватель с меньшим диаметром, что снижает стоимость оборудования. В некоторых вариантах выполнения подаваемый ток может составлять около 1, около 10, около 70, 100, 200, 500 А или более. В некоторых вариантах выполнения переменный ток можно подавать с напряжениями более около 220, более около 480, более около 600,более около 1000 или более около 1500 В. В одном варианте выполнения нагреватель с ограниченной температурой может включать внутренний проводник внутри наружного проводника. Внутренний проводник и наружный проводник могут быть расположены радиально вокруг центральной оси. Внутренний и наружный проводники могут быть разделены слоем изоляции. В некоторых вариантах выполнения внутренний и наружный проводники могут быть соединены друг с другом у дна нагревателя. Электрический ток может проходить в нагреватель через внутренний проводник и возвращаться через наружный проводник. Один или оба проводника могут содержать ферромагнитный материал. Изоляционный слой может содержать электрически изолирующую керамику с большой теплопроводностью, такую как оксид магния, оксид алюминия, диоксид кремния, оксид бериллия, нитрид бора,нитрид кремния и т.д. Изоляционный слой может быть уплотненным порошком (например, уплотненным керамическим порошком). Уплотнение может повышать теплопроводность и обеспечивать лучшее сопротивление изоляции. Для применения при низких температурах можно использовать полимерную изоляцию, выполненную, например, из фторполимеров, полиимидов, полиамидов и/или полиэтиленов. Изоляционный слой можно выбирать прозрачным для инфракрасного излучения для облегчения переноса тепла из внутреннего проводника к наружному проводнику. В одном варианте выполнения изоляционный слой может быть прозрачным кварцевым песком. Изоляционный слой может быть воздухом или нереактивным газом, таким как гелий, азот или гексафторид серы. Если изоляционный слой является воздухом или нереактивным газом, то можно использовать изоляционные распорки для воспрещения электрического контакта между внутренним проводником и наружным проводником. Изоляционные распорки могут быть изготовлены, например, из оксида алюминия высокой чистоты или другого теплопроводного, электрически изолирующего материала, такого как нитрид кремния. Изоляционные распорки могут быть волоконным керамическим материалом, таким как Nextel 312, микалентой или стекловолокном. Керамические материалы могут быть изготовлены из оксида алюминия, алюмосиликата, алюмоборосиликата, нитрида кремния или других материалов. Изоляционный слой может быть гибким и/или, по существу, допускающим деформацию. Например, если изоляционный слой является твердым или уплотненным материалом, который, по существу,заполняет пространство между внутренним и наружным проводниками, то нагреватель может быть гибким и/или, по существу, допускающим деформацию. Силы, действующие на наружный проводник, могут передаваться через изоляционный слой на твердый внутренний проводник, который может противостоять сминанию. Такой нагреватель можно сгибать, резко искривлять и наматывать спирально без возникновения электрического короткого замыкания между наружным проводником и внутренним проводником. Возможность деформации может быть важной, если скважина может испытывать значительные деформации во время нагревания пласта. В некоторых вариантах выполнения наружный проводник можно выбирать стойким к коррозии и/или ползучести. В одном варианте выполнения в наружном проводнике можно использовать аустенит- 15009586 ную (неферромагнитную) нержавеющую сталь, такую как нержавеющая сталь 304 Н, 347 Н, 347 НН, 316 Н или 310 Н. Наружный проводник может включать также плакированный проводник. Например, стойкий к коррозии сплав, такой как нержавеющая сталь 800 Н или 347 Н, может быть плакирован для защиты от коррозии поверх трубы из ферромагнитной углеродистой стали. Если не требуется высокая температурная прочность, то наружный проводник может быть также выполнен из ферромагнитного металла с хорошей стойкостью к коррозии (например, из одной из ферритных нержавеющих сталей). В одном варианте выполнения ферритный сплав из 82,3% железа с 17,7% хрома (температура Кюри 678 С) может обеспечивать желаемую стойкость к коррозии. В Справочнике по металлам, том 8, стр. 291 (Американское общество металлов) показан график зависимости температуры Кюри сплавов железа с хромом от количества хрома в сплавах. В некоторых вариантах выполнения нагревателя с ограниченной температурой отдельный опорный стержень или труба (изготовленная, например, из нержавеющей стали 347 Н) могут быть соединены с нагревателем (например, с нагревателем, изготовленным из сплава железа с хромом) для обеспечения прочности и/или сопротивления ползучести. Опорный материал и/или ферромагнитный материал можно выбирать для обеспечения длительной ползучести 100000 ч при давлении по меньшей мере 3000 фунт-сила на квадратный дюйм (21 МПа) при температуре около 650 С. В некоторых вариантах выполнения длительная ползучесть в 100000 ч может составлять по меньшей мере 2000 фунт-сила на квадратный дюйм (14 МПа) при температуре около 650 С или по меньшей мере около 1000 фунт-сила на квадратный дюйм (7 МПа) при температуре около 650 С. Например, сталь 347 Н имеет благоприятную длительную ползучесть при температуре 650 С или выше. В некоторых вариантах выполнения длительная ползучесть в 100000 ч может находиться в диапазоне от приблизительно 1000 фунт-сила на квадратный дюйм (7 МПа) до приблизительно 6000 фунт-сила на квадратный дюйм (42 МПа) или более для длинных нагревателей и/или более высоких напряжений почвы или флюидов. В одном варианте выполнения с внутренним ферромагнитным проводником и наружным ферромагнитным проводником путь прохождения поверхностного тока возникает на внешней стороне внутреннего проводника и на внутренней стороне наружного проводника. Таким образом, внешнюю сторону наружного проводника можно плакировать стойким к коррозии сплавом, таким как нержавеющая сталь,без оказания влияния на путь прохождения поверхностного тока на внутренней стороне наружного проводника. Ферромагнитный проводник с толщиной более глубины скин-слоя при температуре Кюри может обеспечивать существенное уменьшение сопротивления переменному току ферромагнитного материала при резком увеличении глубины скин-слоя вблизи температуры Кюри. В некоторых вариантах выполнения(например, без плакирования хорошо проводящим материалом, таким как медь) толщина проводника может быть примерно в 1,5 раза, и примерно в 3 раза, или даже примерно в 10 раз больше глубины скинслоя вблизи температуры Кюри. Если ферромагнитный материал плакирован медью, то толщина ферромагнитного проводника может быть, по существу, одинаковой с глубиной скин-слоя вблизи температуры Кюри. В некоторых вариантах выполнения ферромагнитный проводник, плакированный медью, может иметь толщину, равную по меньшей мере трем четвертям глубины скин-слоя вблизи температуры Кюри. В одном варианте выполнения нагреватель с ограниченной температурой может включать композитный проводник с ферромагнитной трубой и неферромагнитным, хорошо электрически проводящим сердечником. Неферромагнитный сердечник с высокой электрической проводимостью уменьшает требуемый диаметр проводника. Например, проводник может быть композитным проводником с диаметром 1,19 см с медным сердечником диаметром 0,575 см, плакированным с толщиной 0,298 см ферритной нержавеющей сталью или углеродистой сталью, окружающей сердечник. Композитный проводник может обеспечивать более резкое уменьшение электрического сопротивления нагревателя с ограниченной температурой вблизи температуры Кюри. При увеличении глубины скин-слоя вблизи температуры Кюри с включением медного сердечника электрическое сопротивление может уменьшаться более резко. Композитный проводник может увеличивать проводимость нагревателя с ограниченной температурой и/или обеспечивать работу нагревателя при более низких напряжениях. В одном варианте выполнения композитный проводник может иметь относительно плоский график зависимости удельного сопротивления от температуры. В некоторых вариантах выполнения нагреватель с ограниченной температурой может иметь относительно плоский график зависимости удельного сопротивления от температуры между около 100 и около 750 С или в диапазоне температур между около 300 и около 600 С. Относительно плоская зависимость удельного сопротивления от температуры может проявляться также в других диапазонах температур посредством выбора, например, материалов и/или конфигурации материалов в нагревателе с ограниченной температурой. В определенных вариантах выполнения относительную толщину каждого материала в композитном проводнике можно выбирать для создания желаемой зависимости удельного сопротивления от температуры для нагревателя с ограниченной температурой. В одном варианте выполнения композитный проводник может быть внутренним проводником, окруженным порошком оксида магния толщиной 0,127 см в качестве изолятора. Наружный проводник может быть из нержавеющей стали 304 Н с толщиной стенки 0,127 см. Наружный диаметр нагревателя может составлять около 1,65 см.- 16009586 Композитный проводник (например, композитный внутренний проводник или композитный наружный проводник) может быть изготовлен с помощью способов, включающих, но не ограничиваясь этим, волочение биметаллического стержня, профилирование листового металла на роликовой листогибочной машине, плотную посадку труб (например, охлаждение внутреннего элемента и нагревание наружного элемента, затем введение внутреннего элемента в наружный элемент с последующей операцией волочения и/или обеспечением охлаждения системы), взрывное или электромагнитное плакирование,дуговую покрывную сварку, продольную сварку полос, плазменную сварку с применением порошкового присадочного материала, экструзию биметаллических стержней, нанесение гальванического покрытия,протяжку, плазменное нанесение покрытия, литье методом совместной экструзии, магнитное формование, цилиндрическое литье расплава (внутреннего материала сердечника внутри наружного или наоборот), вставление с последующей сваркой или высокотемпературной пайкой твердым припоем, сварку активным газом с защитой зоны сварки и/или введение внутренней трубы в наружную трубу с последующим механическим расширением внутренней труды с помощью гидропрессования или использования болванки для расширения и прижимания внутренней трубы к наружной трубе. В некоторых вариантах выполнения ферромагнитный проводник можно наносить в виде оплетки поверх неферромагнитного проводника. В определенных вариантах выполнения композитные проводники можно формировать с использованием способов, аналогичных способам плакирования (например, плакирование стали посредством меди). Металлургическое скрепление между медной плакировкой и основным ферромагнитным материалом может быть предпочтительным. Композитные проводники, изготовленные с помощью процесса совместной экструзии, который обеспечивает хорошее металлургическое соединение (например,хорошее соединение между медью и нержавеющей сталью 446), поставляются фирмой Anomet Products,Inc. (Shrewsbury, Ma). В одном варианте выполнения два или более проводников можно соединять с образованием композитного проводника с помощью различных способов (включая продольную сварку полос) для обеспечения плотного контакта между проводящими слоями. В определенных вариантах выполнения можно комбинировать два или более проводящих слоев и/или изолирующих слоев с образованием композитного нагревателя со слоями, выбранными так, что коэффициент теплового расширения уменьшается для каждого последующего слоя от внутреннего слоя в направлении наружного слоя. При повышении температуры нагревателя самый внутренний слой расширяется в наивысшей степени. Каждый последующий,лежащий снаружи слой расширяется в слегка меньшей степени, при этом самый наружный слой расширяется меньше всех. Это последовательное расширение обеспечивает тесный контакт между слоями для хорошего электрического контакта между слоями. В одном варианте выполнения два или более проводников можно волочить совместно с образованием композитного проводника. В определенных вариантах выполнения относительно ковкий ферромагнитный проводник (например, железный, такой как сталь 1018) можно использовать для образования композитного проводника. Относительно мягкий ферромагнитный проводник обычно имеет низкое содержание углерода. Относительно ковкий ферромагнитный проводник может быть полезным в процессе волочения для образования композитных проводников и/или других процессах, которые требуют вытягивания или изгибания ферромагнитного проводника. В процессе волочения ферромагнитный материал можно отпускать после одной или нескольких стадий процесса волочения. Ферромагнитный проводник можно отпускать в атмосфере инертного газа для воспрещения окисления проводника. В некоторых вариантах выполнения на ферромагнитный проводник можно наносить масло для воспрещения окисления проводника во время обработки. Диаметр нагревателя с ограниченной температурой может быть достаточно небольшим для воспрещения деформации нагревателя разрушающимся пластом. В определенных вариантах выполнения наружный диаметр нагревателя с ограниченной температурой может быть меньше приблизительно 5 см. В некоторых вариантах выполнения наружный диаметр нагревателя с ограниченной температурой может быть меньше приблизительно 4 см, меньше приблизительно 3 см или приблизительно между 2 и 5 см. В описанных вариантах выполнения нагревателя (например, включая, но не ограничиваясь этим,нагреватели с ограниченной температурой, нагреватели с изолированным проводником, нагреватели типа проводник в канале и нагреватели с удлиненным элементом) наибольший размер поперечного сечения нагревателя можно выбирать с целью обеспечения желаемого отношения наибольшего размера поперечного сечения к диаметру скважины (например, начальному диаметру скважины). Наибольшим размером поперечного сечения является наибольший размер нагревателя по той же оси, что и диаметр скважины(например, диаметр цилиндрического нагревателя или ширина вертикального нагревателя). В определенных вариантах выполнения отношение наибольшего размера поперечного сечения к диаметру скважины можно выбирать приблизительно менее 1:2, приблизительно менее 1:3 или приблизительно менее 1:4. Отношение диаметра нагревателя к диаметру скважины можно выбирать с целью воспрещения контакта и/или деформации нагревателя пластом (т.е. исключения смыкания скважины на нагревателе) во время нагревания. В определенных вариантах выполнения диаметр скважины может задаваться диаметром бурового долота, используемого для создания скважины. В одном варианте выполнения диаметр скважины может сокращаться от начальной величины 17 см- 17009586 до около 6 см во время нагревания пласта (например, для скважины в нефтеносных сланцах с содержанием нефти более около 0,12 л/кг). В некоторой точке расширение материала пласта в скважину во время нагревания скважины приводит к равновесию между окружным напряжением скважины и прочностью на сжатие вследствие теплового расширения слоев, богатых углеводородами или керогеном. В этой точке пласт больше не имеет силы для деформации или разрушения нагревателя или оболочки. Например,радиальное усилие, создаваемое материалом пласта, может составлять около 12000 фунт-сила на кв.дюйм (84 МПа) при диаметре 17 см, в то время как усилие при диаметре около 6 см после расширения может составлять 3000 фунт-сила на кв.дюйм (21 МПа). Диаметр нагревателя можно выбирать менее около 5,1 см для исключения контакта пласта и нагревателя. Нагреватель с ограниченной температурой может предпочтительно обеспечивать более высокий выход тепла в значительной части скважины (например, выход тепла, необходимый для обеспечения тепла, достаточного для пиролиза углеводородов в содержащем углеводороды пласте), чем нагреватель неизменной мощности, при небольших диаметрах нагревателя (например, менее приблизительно 5,1 см). В определенных вариантах выполнения нагреватель можно помещать в устойчивый к деформации контейнер. Стойкий к деформации контейнер может обеспечивать дополнительную защиту с целью исключения деформации нагревателя. Стойкий к деформации контейнер может иметь более высокую длительную прочность, чем нагреватель. В одном варианте выполнения стойкий к деформации контейнер может иметь длительную прочность, по меньшей мере 3000 фунт-сила на кв.дюйм (21 МПа) в течение 100000 ч при температуре около 650 С. В некоторых вариантах выполнения длительная прочность стойкого к деформации контейнера может составлять по меньшей мере около 4000 фунт-сила на кв.дюйм (28 МПа) в течение 100000 ч или по меньшей мере около 5000 фунт-сила на кв.дюйм (35 МПа) в течение 100000 ч при температуре около 650 С. В одном варианте выполнения стойкий к деформации контейнер может включать сплав железа, никеля, хрома, магния, углерода, тантала и/или их смеси. На фиг. 5 показан вариант выполнения нагревателя с ограниченной температурой с наружным проводником, имеющим ферромагнитную секцию и неферромагнитную секцию. На фиг. 6 и 7 показаны поперечные разрезы варианта выполнения, показанного на фиг. 5. В одном варианте выполнения ферромагнитная секция 160 может использоваться для обеспечения нагревания углеводородных слоев в пласте. Неферромагнитная секция 162 может использоваться в покрывающем слое пласта. Неферромагнитная секция 162 может отдавать мало тепла или не отдавать тепло в покрывающий слой, исключая, тем самым, потери тепла в покрывающем слое и улучшая эффективность нагревателя. Ферромагнитная секция 160 может включать ферромагнитный материал, такой как нержавеющая сталь 409 или 410. Нержавеющая сталь 409 легко доступна в виде полосового материала. Ферромагнитная секция 160 может иметь толщину около 0,3 см. Неферромагнитная секция 162 может быть медью с толщиной около 0,3 см. Внутренний проводник 164 может быть медью. Внутренний проводник 164 может иметь диаметр около 0,9 см. Электрический изолятор 166 может быть порошком оксида магния или другим подходящим изоляционным материалом. Электрический изолятор 166 может иметь толщину от приблизительно 0,1 до 0,3 см. На фиг. 8 показан вариант выполнения нагревателя с ограниченной температурой с наружным проводником, имеющим ферромагнитную секцию и неферромагнитную секцию, расположенные в оболочке. На фиг. 9, 10 и 11 показаны разрезы варианта выполнения, показанного на фиг. 8. Ферромагнитная секция 160 может быть нержавеющей сталью толщиной около 0,6 см. Неферромагнитная секция 162 может быть медью с толщиной около 0,3 см. Внутренний проводник 164 может быть медью с диаметром около 0,9 см. Наружный проводник 168 может включать ферромагнитный материал. Наружный проводник 168 может передавать некоторое количество тепла через покрывающий слой секции нагревателя. Создание некоторого количества тепла в покрывающем слое может исключать конденсацию или дефлегмацию флюидов в покрывающем слое. Наружный проводник 168 может быть нержавеющей сталью 409, 410 или 446 с наружным диаметром около 3,0 см и толщиной около 0,6 см. Электрический изолятор 166 может быть порошком оксида магния с толщиной около 0,3 см. Проводящая секция 170 может соединять внутренний проводник 164 с ферромагнитной секцией 160 и/или наружным проводником 168. На фиг. 12 показан вариант выполнения нагревателя с ограниченной температурой с ферромагнитным наружным проводником. Проводящий слой может быть расположен в кожухе, стойком к коррозии. Проводящий слой может быть расположен между наружным проводником и кожухом. На фиг. 13 и 14 показаны варианты выполнения сечений для нагревателя, показанного на фиг. 12. Наружный проводник 168 может быть трубой режима 80 с диаметром 3/4 дюйма (19 мм) из нержавеющей стали 446. В одном варианте выполнения проводящий слой 172 расположен между наружным проводником 168 и кожухом 174. Проводящий слой 172 может быть медным слоем. Наружный проводник может быть покрыт проводящим слоем 172. В определенных вариантах выполнения проводящий слой 172 может включать один или более сегментов (например, проводящий слой 172 может включать один или более сегментов медной трубы). Кожух 174 может быть трубой режима 80 с диаметром 1 дюйма (31,7 мм) из нержавеющей стали 347 Н или трубой режима 160 с диаметром 1 дюйма (38 мм) из нержавеющей стали 347 Н. В одном варианте выполнения внутренний проводник 164 является печным кабелем 4/0 MGT-1000 со скрученным,покрытым никелем медным проводом со слоями микаленты и изоляции из стекловолокна. Печной кабель 4/0 MGT-1000 является кабелем типа UL 5107 (поставляется фирмой Allied Wire and Cable, Phoenixville,- 18009586 Пенсильвания). Проводящая секция 170 может соединять внутренний проводник 164 и кожух 174. В одном варианте выполнения проводящая секция 170 может быть из меди. На фиг. 15 показан вариант выполнения нагревателя с ограниченной температурой с наружным проводником. Наружный проводник может включать ферромагнитную секцию и неферромагнитную секцию. Нагреватель может быть размещен в стойком к коррозии кожухе. Проводящий слой может быть расположен между наружным проводником и кожухом. На фиг. 16 и 17 показаны разрезы варианта выполнения, показанного на фиг. 15. Ферромагнитная секция 160 может быть нержавеющей сталью 409,410 или 446 с толщиной около 0,9 см. Неферромагнитная секция 162 может быть медью с толщиной около 0,9 см. Ферромагнитная секция 160 и неферромагнитная секция 162 могут быть расположены в кожухе 174. Кожух 174 может быть нержавеющей сталью 304 с толщиной около 0,1 см. Проводящий слой 172 может быть медным слоем. Электрический изолятор может быть оксидом магния с толщиной около 0,10,3 см. Внутренний проводник может быть медью с толщиной около 0,1 см. В одном варианте выполнения ферромагнитная секция может быть нержавеющей сталью с толщиной около 0,9 см. Кожух 174 может быть нержавеющей сталью с толщиной около 0,6 см. Нержавеющая сталь 410 имеет более высокую температуру Кюри, чем нержавеющая сталь 446. Такой нагреватель с ограниченной температурой может "удерживать" ток так, что ток не может просто протекать из нагревателя в окружающий пласт (т.е. в землю) и/или любую окружающую воду (например, соляной раствор в пласте). В этом варианте выполнения ток протекает через ферромагнитную секцию 160, пока не будет достигнута температура Кюри ферромагнитной секции. После достижения температуры Кюри ферромагнитной секции 160 ток протекает через проводящий слой 172. Ферромагнитные свойства кожуха 174(нержавеющей стали 410) воспрещают прохождение тока снаружи проводника и "удерживают" ток. Кроме того, кожух 174 может иметь толщину, которая обеспечивает прочность нагревателя с ограниченной температурой. На фиг. 18 показан вариант выполнения нагревателя с ограниченной температурой. Нагревательная секция нагревателя с ограниченной температурой может включать неферромагнитные внутренние проводники и ферромагнитный наружный проводник. Проходящая через покрывающий слой секция нагревателя с ограниченной температурой может содержать неферромагнитный наружный проводник. На фиг. 19,20 и 21 показаны разрезы варианта выполнения, показанного на фиг. 18. Внутренний проводник 164 может быть медью с диаметром около 0,1 см. Электрический изолятор 166 может быть расположен между внутренним проводником 164 и проводящим слоем 172. Электрический изолятор 166 может быть оксидом магния с толщиной около 0,1-0,3 см. Проводящий слой 172 может быть медью с толщиной около 0,1 см. Изоляционный слой 176 может быть в кольцевом пространстве снаружи проводящего слоя 172. Толщина кольцевого пространства может составлять около 0,3 см. Изоляционный слой 176 может быть кварцевым песком. Нагревательная секция 178 может отдавать тепло в один или более слоев углеводорода в пласте. Нагревательная секция 178 может включать ферромагнитный материал, такой как нержавеющая сталь 409 или 410. Нагревательная секция 178 может иметь толщину около 0,9 см. Наконечник 180 может быть соединен с концом нагревательной секции 178. Наконечник 180 может электрически соединять нагревательную секцию 178 с внутренним проводником 164 и/или проводящим слоем 172. Наконечник 180 может быть из нержавеющей стали 304. Нагревательная секция 178 может быть соединена с проходящей через покрывающий слой секцией 182. Проходящая через покрывающий слой секция 182 может включать углеродистую сталь и/или другие подходящие опорные материалы. Проходящая через покрывающий слой секция 182 может иметь толщину около 0,6 см. Проходящая через покрывающий слой секция 182 может быть покрыта проводящим слоем 184. Проводящий слой 184 может быть медью с толщиной около 0,3 см. На фиг. 22 показан вариант выполнения нагревателя с ограниченной температурой, содержащего секцию с покрывающим слоем и нагревательной секцией. На фиг. 23 и 24 показаны разрезы варианта выполнения, показанного на фиг. 22. Проходящая через покрывающий слой секция может включать часть 164 А внутреннего проводника 164. Часть 164 А может быть медью с диаметром около 1,3 см. Нагревательная секция может включать часть 164 В внутреннего проводника 164. Часть 164 В может быть медью с диаметром около 0,5 см. Часть 164 В может быть расположена в ферромагнитном проводнике 186. Ферромагнитный проводник 186 может быть нержавеющей сталью 446 с толщиной около 0,4 см. Электрический изолятор 166 может быть оксидом магния с толщиной около 0,2 см. Наружный проводник 168 может быть медью с толщиной около 0,1 см. Наружный проводник 168 может быть размещен в кожухе 174. Кожух 174 может быть из нержавеющей стали 316 Н или 347 Н с толщиной около 0,2 см. В некоторых вариантах выполнения проводник (например, внутренний проводник, наружный проводник, ферромагнитный проводник) может включать два или более различных материалов. В определенных вариантах выполнения композитный проводник может включать два или более ферромагнитных материалов. В некоторых вариантах выполнения композитный ферромагнитный проводник включает два или более радиально расположенных материалов. В определенных вариантах выполнения композитный проводник может включать ферромагнитный проводник и неферромагнитный проводник. В некоторых вариантах выполнения композитный проводник может включать ферромагнитный проводник, располо- 19009586 женный над неферромагнитным сердечником. Для получения относительно плоского графика зависимости электрического удельного сопротивления от температуры в диапазоне температур ниже температуры Кюри и/или резкого уменьшения электрического удельного сопротивления при температуре Кюри или вблизи нее (например, относительно высокое отношение уменьшения) можно использовать два или более материалов. В некоторых случаях можно использовать два или более материалов для обеспечения более одной температуры Кюри для нагревателя с ограниченной температурой. В определенных вариантах выполнения композитный электрический проводник можно создавать с использованием процесса совместной экструзии из заготовки. Процесс совместной экструзии из заготовки может включать соединение друг с другом двух или более электрическихпроводников при относительно высокой температуре (например, при температурах, которые находятся вблизи или превышают 75% температуры плавления проводника). Электрические проводники можно совместно волочить при относительно высоких температурах. Совместно вытягиваемые проводники можно затем охлаждать с образованием композитного электрического проводника, выполненного из двух или более проводников. В некоторых вариантах выполнения композитный электрический проводник может быть сплошным композитным электрическим проводником. В определенных вариантах выполнения композитный электрический проводник может быть трубчатым композитным электрическим проводником. В одном варианте выполнения медный сердечник может быть совместно эктрудирован из заготовки с проводником из нержавеющей стали (например, нержавеющей стали 446). Медный сердечник и проводник из нержавеющей стали можно нагревать до температуры размягчения в вакууме. При температуре размягчения проводник из нержавеющей стали можно вытягивать поверх медного сердечника для образования плотной посадки. Затем проводник из нержавеющей стали и медный сердечник можно охлаждать для образования композитного электрического проводника с нержавеющей сталью, окружающей медный сердечник. В некоторых вариантах выполнения длинный композитный электрический проводник можно создавать из нескольких секций композитного электрического проводника. Секции композитного электрического проводника можно создавать с помощью процесса совместной экструзии из заготовки. Секции композитного электрического проводника можно соединять друг с другом с использованием процесса сварки. На фиг. 25, 26 и 27 показаны варианты выполнения соединенных секций композитных электрических проводников. Как показано на фиг. 28, сердечник 188 проходит за концы внутреннего проводника 164 в каждой секции композитного электрического проводника. В одном варианте выполнения сердечник 188 состоит из меди, а внутренний проводник 164 из нержавеющей стали 446. Сердечники 188 из каждой секции композитного электрического проводника можно соединять друг с другом с помощью,например, пайки твердым припоем концов сердечника друг с другом. Соединяющий сердечники материал 190 может соединять концы сердечников друг с другом, как показано на фиг. 25. Соединяющий сердечники материал 190 может быть, например, сплавом Everdur, материалом из сплава меди с кремнием(например, сплавом с около 3 мас.% кремния в меди). Соединяющий внутренние проводники материал 192 может соединять внутренние проводники 164 из каждой секции композитного электрического проводника. Соединяющий внутренние проводники материал 192 может быть материалом, используемым для сварки друг с другом секций внутреннего проводника 164. В определенных вариантах выполнения соединяющий внутренние проводники материал 192 можно использовать для сварки друг с другом секций внутреннего проводника из нержавеющей стали. В некоторых вариантах выполнения соединяющий внутренние проводники материал 192 является нержавеющей сталью 304 или нержавеющей сталью 310. Можно использовать третий материал (например, нержавеющую сталь 309) для соединения соединяющего внутренние проводники материала 192 с концами внутреннего проводника 164. Третий материал может быть необходим или желателен для создание лучшего соединения (например, лучшей сварки) между внутренним проводником 164 и соединяющим внутренние проводники материалом 192. Третий материал может быть немагнитным для уменьшения возможности возникновения горячей точки в месте соединения. В определенных вариантах выполнения соединяющий внутренние проводники материал 192 может окружать концы сердечников 188, которые выступают за концы внутренних проводников 164, как показано на фиг. 25. Соединяющий внутренние проводники материал 192 может включать одну или более частей, соединенных друг с другом. Соединяющий внутренние проводники материал 192 может быть расположен в виде зажимной оболочки вокруг концов сердечников 188, которые выступают за концы внутренних проводников 164, как показано на виде с торца на фиг. 26. Можно использовать также соединительный материал 194 для соединения друг с другом частей (например, половин) соединяющего внутренние проводники материала 192. Соединительный материал 194 может быть тем же материалом,что и соединяющий внутренние проводники материал 192, или другим материалом, пригодным для соединения друг с другом частей соединяющего внутренние проводники материала. В некоторых вариантах выполнения композитный электрический проводник может включать соединяющий внутренние проводники материал 192 из нержавеющей стали 304 или нержавеющей стали 310 и внутренний проводник 164 из нержавеющей стали 446 или другого ферромагнитного материала. В таком варианте выполнения соединяющий внутренние проводники материал 192 может создавать значи- 20009586 тельно меньше тепла, чем внутренний проводник 164. Части композитного электрического проводника,которые содержат соединяющий внутренние проводники материал (например, сваренные части или"стыки" композитного электрического проводника), могут оставаться на более низкой температуре, чем смежный материал, во время подачи электрического тока в композитный электрический проводник. Надежность и стойкость композитного электрического проводника могут увеличиваться за счет удерживания стыков композитного электрического проводника на более низкой температуре. На фиг. 27 показан другой вариант выполнения соединения друг с другом секций композитного электрического проводника. Концы сердечника 188 и концы внутренних проводников 164 снабжаются скосом для облегчения соединения друг с другом секций композитного электрического проводника. Соединяющий сердечники материал 290 может соединять (например, посредством пайки твердым припоем) друг с другом концы каждого сердечника 188. Концы каждого внутреннего проводника 164 можно соединять (например, посредством сварки) друг с другом с помощью соединяющего внутренние проводники материала 192. Соединяющий внутренние проводники материал 192 может быть нержавеющей сталью 309 или другим подходящим сварочным материалом. В некоторых вариантах выполнения соединяющий внутренние проводники материал 192 является нержавеющей сталью 309. Нержавеющую сталь 309 можно надежно сваривать как с внутренним проводником, состоящим из нержавеющей стали 446,так и с сердечником, состоящим из меди. Использование снабженных скосом концов при соединении друг с другом секций композитного электрического проводника может обеспечивать создание надежного и стойкого соединения между секциями композитного электрического проводника. На фиг. 27 показано место сварки, выполненное между концами секций, которые имеют скошенные поверхности. Композитный электрический проводник можно использовать в качестве проводника в любом описанном здесь варианте выполнения электрического нагревателя. В одном варианте выполнения композитный электрический проводник можно использовать в качестве проводника в нагревателе типа проводник в канале. Например, композитный электрический проводник можно использовать в качестве проводника 146 на фиг. 4. В определенных вариантах выполнения композитный электрический проводник можно использовать в качестве проводника в нагревателе с изолированным проводником. На фиг. 28 показан вариант выполнения нагревателя с изолированным проводником. Изолированный проводник 196 может включать сердечник 188 и внутренний проводник 164. Сердечник 188 и внутренний проводник 164 могут быть композитным электрическим проводником. Сердечник 188 и внутренний проводник 164 могут быть расположены внутри изолятора 166. Сердечник 188, внутренний проводник 164 и изолятор 166 могут быть расположены внутри наружного проводника 168. Изолятор 166 может быть оксидом магния или другим подходящим электрическим изолятором. Наружный проводник 168 может быть из меди,стали или любого другого электрического проводника. В некоторых вариантах выполнения изолятор 166 может быть изолятором с предварительно созданной формой. Композитный электрический проводник, имеющий сердечник 188 и внутренний проводник 164, может быть расположен внутри предварительно сформированного изолятора. Наружный проводник 168 может быть расположен над изолятором 166 посредством соединения (например, с помощью сварки или пайки твердым припоем) одной или нескольких продольных полос электрического проводника друг с другом с образованием наружного проводника. Продольные полосы можно располагать поверх изолятора 166 способом сигарной намотки для соединения полос по ширине или в радиальном направлении (то есть расположения отдельных полос вокруг окружности изолятора и соединения отдельных полос для окружения изолятора). Продольные концы обернутых сигарным способом полос можно соединять с продольными концами других обернутых сигарным способом концов с целью соединения полос по длине вдоль изолированного проводника. В некоторых вариантах выполнения кожух 174 может быть расположен снаружи наружного проводника 168, как показано на фиг. 29. В некоторых вариантах выполнения кожух 174 может быть из нержавеющей стали (например, нержавеющей стали 304) и наружный проводник 168 может быть из меди. Кожух 174 может обеспечивать стойкость к коррозии для нагревателя с изолированным проводником. В некоторых вариантах выполнения кожух 174 и наружный проводник 168 могут быть предварительно сформированными полосами, которые натягиваются поверх изолятора 166 для образования изолированного проводника 196. В некоторых вариантах выполнения изолированный проводник 196 может быть расположен в канале,который обеспечивает защиту (например, для нагревания флюидов в эксплуатационной скважине или уменьшения вязкости флюидов в скважине). Можно использовать различные материалы в композитном электрическом проводнике для обеспечения нагревания при низких температурах. В некоторых вариантах выполнения внутренний проводник 164 (как показано на фиг. 25-30) может быть изготовлен из материалов с более низкой температурой Кюри, чем у нержавеющей стали 446. Например, внутренний проводник 164 может быть сплавом железа и никеля. Сплав может содержать приблизительно между 30 и 42 мас.% никеля, при этом остаток является железом (например, сплав никеля с железом, такой как инвар 36, который содержит около 36 мас.% никеля в железе и имеет температуру Кюри около 277 С). В некоторых вариантах выполнения сплав может быть трехкомпонентным сплавом, например хрома, никеля и железа(например, сплав с 6 мас.% хрома, 42 мас.% никеля и 52 мас.% железа). Внутренний проводник, выполнен- 21009586 ный из сплава этого типа, может обеспечивать выход тепла между приблизительно 250 и около 350 Вт/м(например, около 300 Вт/м). Стержень из сплава инвар 36 диаметром 2,5 см имеет отношение уменьшения около 2:1 при температуре Кюри. Размещение сплава инвар 36 поверх медного сердечника позволяет иметь меньший диаметр стержня (например, менее 2,5 см). Медный сердечник может приводить к увеличению отношения уменьшения (например, более 2:1). Изолятор 166 можно выполнять из полимерного изолятора (например, PFA, PEER) с высокими характеристиками при использовании сплавов с низким выходом тепла (например, инвар 36). На фиг. 31 показан нагреватель с ограниченной температурой с низкотемпературным ферромагнитным наружным проводником. Наружный проводник 168 может быть сплавом 42-6 (около 42,5 мас.% никеля, около 5,75 мас.% хрома и остальное железо) для пайки стекла. Сплав 42-6 имеет относительно низкую температуру Кюри около 295 С. Сплав 42-6 поставляют фирмы Carpenter Metals (Reading, Пенсильвания) и Anomet Products, Inc. В некоторых вариантах выполнения наружный проводник 168 может включать другие составы и/или материалы для получения различных температур Кюри. В одном варианте выполнения проводящий слой 172 соединен (например, плакирован, сварен или спаян твердым припоем) с наружным проводником 168. Проводящий слой 172 может быть медным слоем. Проводящий слой 172 может улучшать отношение уменьшения наружного проводника 168. Кожух 174 может быть из ферромагнитного металла, такого как углеродистая сталь. Кожух 174 защищает наружный проводник 168 от коррозийного окружения. Внутренний проводник 164 может иметь электрический изолятор 166. Внутренний проводник 164 может быть скрученной медной проволокой, покрытой никелем. Электрический изолятор 166 может быть намотанной микалентой с расположенной сверху стекловолоконной оплеткой. В одном варианте выполнения внутренний проводник 164 и электрический изолятор 166 являются печным кабелем 4/0 MGT-1000 или печным кабелем 3/0 MGT-1000. Печной кабель 4/0 MGT-1000 или печной кабель 3/0 MGT-1000 поставляются фирмой Allied Wire and Cable, (Phoenixville, Пенсильвания). В некоторых вариантах выполнения поверх электрического изолятора 166 может быть расположена защитная оплетка (например, оплетка из нержавеющей стали). Проводящая секция 170 может соединять внутренний проводник 164 с наружным проводником 168 и/или кожухом 174. В некоторых вариантах выполнения кожух 174 может касаться или находиться в электрическом контакте с проводящим слоем 172 (например, если нагреватель расположен горизонтально). Если кожух 174 является ферромагнитным металлом, таким как углеродистая сталь с температурой Кюри кожуха выше температуры Кюри наружного проводника 168, то ток будет проходить только по внутренней стороне кожуха, так что наружная сторона кожуха остается электрически защищенной во время работы. В некоторых вариантах выполнения кожух 174 может быть натянут (например, обжат в прессе) на проводящий слой 172, так что обеспечивается плотная посадка между кожухом и проводящим слоем. Нагреватель можно сматывать в виде намотанной на катушку трубы для введения в скважину в подземном пласте. В некоторых вариантах выполнения медный сердечник может быть покрыт или защищен относительно стойким к диффузии слоем (например, никеля). В некоторых вариантах выполнения композитный внутренний проводник может включать железное покрытие поверх никелевого покрытия на медном сердечнике. Относительно стойкий к диффузии слой может воспрещать миграцию меди в другие слои нагревателя, включая, например, изоляционный слой. В определенных типах нагревателей воспрещение миграции меди может исключать возможность образования электрической дуги во время использования нагревателя. В некоторых вариантах выполнения относительно непроницаемый слой может воспрещать отложение меди в скважине. В одном варианте выполнения нагревателя внутренний проводник может быть железным стержнем с диаметром 1,9 см, изолирующий слой может быть оксидом магния толщиной 0,25 см и наружный проводник может быть нержавеющей сталью 347 Н или 347 НН толщиной 0,635 см. Нагреватель может снабжаться из источника, по существу, неменяющегося тока с частотой (например, 60 Гц) линии питания. Нержавеющую сталь можно выбирать для обеспечения стойкости к коррозии в газовом подземном окружении и/или повышенной стойкости к ползучести при повышенных температурах. Ниже температуры Кюри тепло может создаваться, прежде всего, железным внутренним проводником. При коэффициенте ввода тепла около 820 Вт/м разница температур в изолирующем слое может равняться примерно 40 С. Таким образом, температура наружного проводника может быть примерно на 40 С ниже температуры внутреннего ферромагнитного проводника. В другом варианте выполнения нагревателя внутренний проводник может быть стержнем с диаметром 1,9 см из меди или медного сплава, такого как LOHM (около 94 мас.% меди и 6 мас.% никеля), изолирующий слой может быть прозрачным кварцевым песком, а наружный проводник может быть 1% углеродистой сталью толщиной 0,635 см, покрытой нержавеющей сталью 310 толщиной 0,25 см. Углеродистая сталь в наружном проводнике может быть плакирована медью между углеродистой сталью и кожухом из нержавеющей стали. Медное покрытие может снижать толщину углеродистой стали, необходимую для обеспечения существенных изменений сопротивления вблизи температуры Кюри. Тепло может создаваться, прежде всего, в ферромагнитном наружном проводнике, что приводит к небольшой разнице температур в изолирующем слое. Когда тепло создается, прежде всего, в наружном проводнике,- 22009586 то в качестве изоляции можно выбирать материал с более низкой теплопроводностью. Для внутреннего проводника можно выбирать медь или медный сплав для уменьшения выхода тепла из внутреннего проводника. Внутренний проводник можно выполнять также из других металлов, которые имеют низкое электрическое удельное сопротивление и относительную магнитную проницаемость около 1 (т.е., по существу, неферромагнитные материалы, такие как алюминий или сплавы алюминия, фосфористая бронза,бериллиевая бронза и/или латунь). В некоторых вариантах выполнения нагреватель с ограниченной температурой может быть нагревателем типа проводник в канале. На внутреннем проводнике могут быть расположены керамические изоляторы или центраторы. Внутренний проводник может создавать скользящий электрический контакт с наружным каналом в секции скользящего соединителя. Секция скользящего соединителя может быть расположена на дне нагревателя или вблизи дна. В некоторых вариантах выполнения центраторы могут быть выполнены из нитрида кремния (Si3N4). В некоторых вариантах выполнения нитрид кремния может быть спеченным в газовой атмосфере, реактивно связанным нитридом кремния. Спеченный в газовой атмосфере, реактивно связанный нитрид кремния получают посредством спекания нитрида кремния при температуре около 1800 С в атмосфере азота с давлением 1500 фунт-сила на кв.дюйм (10,3 МПа) для исключения деградации нитрида кремния во время спекания. Примером спеченного в газовой атмосфере, реактивно связанного нитрида кремния является Ceralloy 147-31N фирмы Ceradyne, Inc. (Costa Mesa, Калифорния). Спеченный в газовой атмосфере, реактивно связанный нитрид кремния можно шлифовать до тонкой отделки. Тонкая отделка позволяет нитриду кремния легко скользить по металлическим поверхностям без захвата металлических частиц за счет очень низкой поверхностной пористости нитрида кремния. Спеченный в газовой атмосфере, реактивно связанный нитрид кремния является очень плотным материалом с высокой прочностью на растяжение и механический изгиб. Спеченный в газовой атмосфере, реактивно связанный нитрид кремния может иметь высокие характеристики ударного теплового напряжения. Спеченный в газовой атмосфере, реактивно связанный нитрид кремния является отличным высокотемпературным электрическим изолятором и имеет такой же ток утечки при температуре около 900 С, что и оксид алюминия (Al2O3) при температуре около 760 С. Спеченный в газовой атмосфере, реактивно связанный нитрид кремния имеет теплопроводность около 25 Вт/мK, что обеспечивает хороший отвод тепла от центрального проводника нагревателя типа проводник в канале при использовании центраторов или скользящих соединителей. Нитрид кремния является также хорошим излучателем тепла, поскольку нитрид кремния является оптически черным (т.е. способствует эффективному переносу тепла в виде излучателя черного тела). Можно использовать другие типы нитрида кремния, включая, но, не ограничиваясь этим, реактивно связанный нитрид кремния или полученный с помощью горячего изостатического прессования нитрид кремния. Полученный с помощью горячего прессования гранулированный нитрид кремния и присадки спекают при давлении 15000-30000 фунт-сила на кв.дюйм (100-200 МПа) в газе азоте. Некоторые нитриды кремния можно получать посредством спекания нитрида кремния с оксидом иттрия или оксидом церия для понижения температуры спекания, так что нитрид кремния не деградирует (например, теряет азот) во время спекания. Добавление слишком большого количества другого материала в нитрид кремния может повышать ток утечки нитрида кремния при повышенных температурах по сравнению с чистыми формами нитрида кремния. Использование центраторов из нитрида кремния позволяет выполнять нагреватели с меньшим диаметром и для более высоких температур. За счет отличных электрических характеристик нитрида кремния (например, низкий ток утечки при высоких температурах) требуется меньший зазор между проводником и каналом. Центраторы из нитрида кремния позволяют применять в нагревателях более высокие напряжения (например по меньшей мере до около 2500 В) за счет электрических характеристик нитрида кремния. Работа при более высоких напряжениях позволяет применять нагреватели с большей длиной(например, с длинами по меньшей мере приблизительно до 1500 м при напряжении около 2500 В). На фиг. 32 показан вариант выполнения нагревателя с ограниченной температурой типа проводник в канале. Проводник 146 может быть соединен (например, плакирован с помощью совместной экструзии,прессовой посадки, втягивания внутрь) с ферромагнитным проводником 186. В некоторых вариантах выполнения ферромагнитный проводник 186 может быть получен посредством совместной экструзии из заготовки поверх проводника 146. Ферромагнитный проводник 186 может быть соединен с внешней стороной проводника 146, так что переменный ток распространяется лишь на глубину скин-слоя в ферромагнитном материале при комнатной температуре. Ферромагнитный проводник 186 может обеспечивать механическую опору для проводника 146 при повышенных температурах. Проводник 146 может обеспечивать механическую опору для ферромагнитного проводника 186 при повышенных температурах. Ферромагнитный проводник 186 может быть из железа, железного сплава (например, железа с от около 10 до около 27 мас.% хрома для коррозионной стойкости и низкой температуры Кюри (например, нержавеющая сталь 446 или любого другого ферромагнитного материала. В одном варианте выполнения проводник 146 состоит из меди, а ферромагнитный проводник 186 из нержавеющей стали 446. Проводник 146 и ферромагнитный проводник 186 могут быть электрически соединены с каналом 138 с помощью скользя- 23009586 щего соединителя 154. Канал 138 может быть из неферромагнитного материала, такого как, но, не ограничиваясь этим, нержавеющая сталь 347. В одном варианте выполнения канал 138 является трубой режима 80 с диаметром 1 дюйма (38 мм) из нержавеющей стали 347 Н. Один или более центраторов 202 могут сохранять зазор между каналом 138 и ферромагнитным проводником 186. В одном варианте выполнения центратор 202 выполнен из спеченного в газовой атмосфере, реактивно связанного нитрида кремния. На фиг. 33 показан другой вариант выполнения нагревателя с ограниченной температурой типа проводник в канале. Канал 138 может быть соединен с ферромагнитным проводником 186 (например,плакирован с помощью прессовой посадки, втягивания внутрь ферромагнитного проводника). Ферромагнитный проводник 186 может быть соединен с внутренней стороной канала 138 для обеспечения прохождения переменного тока на глубине скин-слоя ферромагнитного проводника при комнатной температуре. Канал 138 может обеспечивать механическую опору для ферромагнитного проводника 186 при повышенных температурах. Канал 138 и ферромагнитный проводник 186 могут быть соединены с проводником 146 с помощью скользящего соединителя 154. На фиг. 34 показан вариант выполнения нагревателя с ограниченной температурой типа изолированный проводник в канале. Изолированный проводник 196 может включать сердечник 188, электрический изолятор 166 и кожух 174. Изолированный проводник 196 может быть соединен с ферромагнитным проводником 186 с помощью соединителя 200. Соединитель 200 может быть выполнен из стойких к коррозии, электрически проводящих материалов, таких как никель или нержавеющая сталь. Соединитель 200 может быть соединен с изолированным проводником 196 и/или ферромагнитным проводником 186 с использованием подходящих способов электрического соединения (например, сварки, пайки, пайки твердым припоем). Изолированный проводник 196 может быть расположен вдоль стенки ферромагнитного проводника 186. Изолированный проводник 196 может обеспечивать механическую опору для ферромагнитного проводника 186 при повышенных температурах. В некоторых вариантах выполнения можно использовать другие структуры (например, канал) для обеспечения механической опоры для ферромагнитного проводника 186. На фиг. 35 и 36 показано сечение нагревателя в одном варианте выполнения с ограниченной температурой, который содержит изолированный проводник. На фиг. 35 показано сечение секции нагревателя с ограниченной температурой, проходящее через покрывающий слой, при одном варианте выполнения. Проходящая через покрывающий слой секция может включать изолированный проводник 196, размещенный в канале 138. Канал 138 может быть трубой режима 80 из углеродистой стали с диаметром 1 дюйма (32 мм), плакированной внутри медью в секции, проходящей через покрывающий слой. Изолированный проводник 196 может быть изолированным минеральным материалом кабелем. Проводящий слой 172 может быть расположен в кольцевом пространстве между изолированным проводником 196 и каналом 138. Проводящий слой 172 может быть медной трубой диаметром примерно 2,5 см. Проходящая через покрывающий слой секция может быть соединена с нагревательной секцией нагревателя. На фиг. 36 показан разрез варианта выполнения нагревательной секции нагревателя с ограниченной температурой. Изолированный проводник 198 в нагревательной секции может быть продолжением изолированного проводника из проходящей через покрывающий слой секции. Ферромагнитный проводник 186 может быть соединен с проводящим слоем 172. В определенных вариантах выполнения проводящий слой 172 в нагревательной секции может быть медью, тянутой поверх ферромагнитного проводника 186 и соединенной с проводящим слоем 172 в проходящей через покрывающий слой секции. Канал 138 может включать нагревательную секцию и проходящую через покрывающий слой секцию. Эти две секции могут быть соединены друг с другом с образованием канала 138. Нагревательная секция может быть трубой режима 80 из нержавеющей стали 347 Н с диаметром 1 дюйма (32 мм). Наконечник или другой подходящий электрический соединитель может соединять ферромагнитный проводник 186 с изолированным проводником 196 на нижнем конце нагревателя (т.е. конце, наиболее удаленном от проходящей через покрывающий слой секции). На фиг. 37 и 38 показаны разрезы варианта выполнения нагревателя с ограниченной температурой,который содержит изолированный проводник. На фиг. 37 показан разрез варианта выполнения проходящей через покрывающий слой секции нагревателя с ограниченной температурой. Изолированный проводник 196 может включать сердечник 188, электрический изолятор 166 и кожух 174. Изолированный проводник 196 может иметь диаметр около 1,5 см. Сердечник 188 может быть из меди. Электрический изолятор 166 может быть оксидом магния. Кожух 174 может быть из меди в проходящей через покрывающий слой секции для уменьшения потери тепла. Канал 138 может быть трубой режима 40 из углеродистой стали с диаметром 1 дюйм (25 мм) в проходящей через покрывающий слой секции. Проводящий слой 172 может быть соединен с каналом 138. Проводящий слой 172 может быть из меди с толщиной около 0,2 см для уменьшения потери тепла в проходящей через покрывающий слой секции. Зазор 198 может быть кольцевым пространством между изолированным проводником 196 и каналом 138. На фиг. 38 показан разрез варианта выполнения нагревательной секции нагревателя с ограниченной температурой. Изолированный проводник 196 в нагревательной секции может быть соединен с изолированным проводником 196 в проходящей через покрывающий слой секции. Кожух 174 в нагревательной секции может- 24009586 быть выполнен из стойкого к коррозии материала (например, нержавеющей стали 825). Ферромагнитный проводник 186 может быть соединен с каналом 138 в проходящей через покрывающий слой секции. Ферромагнитный проводник 186 может быть трубой режима 160 из нержавеющей стали 409, 410 или 446. Зазор 198 может быть образован между ферромагнитным проводником 186 и изолированным проводником 196. Наконечник или другой подходящий электрический соединитель может соединять ферромагнитный проводник 186 с изолированным проводником 196 на дальнем конце нагревателя (т.е. конце, наиболее удаленном от проходящей через покрывающий слой секции). В определенных вариантах выполнения нагреватель с ограниченной температурой может включать гибкий кабель (например, печной кабель) в качестве внутреннего проводника. Например, внутренний проводник может быть скрученной медной проволокой, покрытой 27% никеля или нержавеющей сталью,с четырьмя слоями микаленты, окруженных слоем керамического или минерального волокна (например,алюмоксидного волокна, алюмосиликатного волокна, боросиликатного волокна или алюмоборосиликатного волокна). Печной кабель из скрученной медной проволоки, покрытой нержавеющей сталью, поставляется фирмой Anomet Products, Inc. (Shrewsbury, MA). Внутренний проводник может быть пригодным для использования при температурах приблизительно вплоть до 1000 С. Внутренний проводник может быть втянут внутрь канала. Канал может быть ферромагнитным каналом (например, трубой режима 80 из нержавеющей стали 446 с диаметром 3/4 дюйма (19 мм. Канал может быть покрыт слоем меди или другого электрического проводника с толщиной около 0,3 см или с другой подходящей толщиной. Узел может быть расположен внутри опорного канала (например, трубы режима 80 из нержавеющей стали 347 Н или 347 НН с диаметром 1 дюйма (32 мм. Опорный канал может обеспечивать дополнительную длительную прочность и защиту для меди и внутреннего проводника. Для использования при температурах свыше около 1000 С внутренний медный проводник может быть покрыт более стойким к коррозии сплавом (например, Incoloy 825) для исключения окисления. В некоторых вариантах выполнения верх нагревателя с ограниченной температурой может быть герметизирован для исключения контактирования воздуха с внутренним проводником. В некоторых вариантах выполнения ферромагнитный проводник нагревателя с ограниченной температурой может включать медный сердечник (например, медный сердечник с диаметром 1,27 см), расположенный внутри первого стального канала (например, трубы режима 80 из нержавеющей стали с диаметром 1/2 дюйма (13 мм. Второй стальной канал (например, труба режима 80 из нержавеющей стали 446 с диаметром 1 дюйм (25 мм может быть натянут поверх узла первого стального канала. Первый стальной канал может обеспечивать прочность и стойкость к ползучести, в то время как медный сердечник может обеспечивать высокое отношение уменьшения. В некоторых вариантах выполнения ферромагнитный проводник нагревателя с ограниченной температурой (например, центральный или внутренний проводник нагревателя с ограниченной температурой типа проводник в канале) может включать канал с толстыми стенками (например, трубу из нержавеющей стали 410 с особенно толстой стенкой). Канал с толстыми стенками может иметь диаметр около 2,5 см. Канал с толстыми стенками может быть натянут поверх медного стержня. Медный стержень может иметь диаметр около 1,3 см. Полученный нагреватель может включать толстую ферромагнитную оболочку (например, канал с толстыми стенками, например с наружным диаметром около 2,6 см после натягивания), содержащую медный стержень. Нагреватель может иметь отношение уменьшения около 8:1. Толщину канала с толстыми стенками можно выбирать для исключения деформации нагревателя. Толстый ферромагнитный канал может обеспечивать устойчивость к деформации с минимальным увеличением стоимости нагревателя. В другом варианте выполнения нагреватель с ограниченной температурой может включать, по существу, U-образный нагреватель с ферромагнитным покрытием поверх неферромагнитного сердечника(в данном контексте U может иметь криволинейную или же, в качестве альтернативного решения, прямоугольную форму). U-образный нагреватель или нагреватель в виде шпильки может иметь изолированный опорный механизм (например, полимерные или керамические распорки), который исключает электрическое короткое замыкание друг с другом двух плеч шпильки. В некоторых вариантах выполнения Uобразный нагреватель может быть установлен в корпусе (например, в защищающем от окружения корпусе). Изоляторы могут воспрещать электрическое короткое замыкание на корпус и могут облегчать установку нагревателя в корпус. Поперечное сечение U-образного нагревателя может быть, но не ограничиваясь этим, круглым, эллиптическим, квадратным или прямоугольным. В некоторых вариантах выполнения нагреватель с ограниченной температурой может включать слоистую структуру, при этом пути подачи и возвращения тока разделены изолятором. Слоистый нагреватель может включать два наружных слоя проводника, два внутренних слоя ферромагнитного материала и слой изолятора между ферромагнитными слоями. Размеры поперечного сечения нагревателя можно оптимировать для обеспечения механической гибкости и возможности сматывания в катушку. Слоистый нагреватель может быть выполнен в виде биметаллической полосы, которая согнута сама на себя. Слоистый нагреватель может быть вставлен в корпус, такой как защищающий от окружения корпус, и может быть отделен от корпуса с помощью электрического изолятора. Нагреватель может включать секцию, которая проходит через покрывающий слой. В некоторых ва- 25009586 риантах выполнения часть нагревателя в покрывающем слое не должна поставлять так много тепла, как часть нагревателя, смежная с углеводородными слоями, которые подлежат внутрипластовой конверсии. В определенных вариантах выполнения, по существу, ненагревательная секция нагревателя может иметь ограниченный выход тепла или не иметь выхода тепла. По существу, ненагревательная секция нагревателя может быть расположена вблизи слоев пласта (например, слоев скалистой породы, не содержащих углеводороды пластов или бедных пластов), которые предпочтительно остаются ненагреваемыми. По существу, ненагревательная секция нагревателя может включать медный проводник вместо ферромагнитного проводника. В некоторых вариантах выполнения, по существу, ненагревательная секция нагревателя может включать медный наружный проводник, плакированный стойким к коррозии сплавом. В некоторых вариантах выполнения проходящая через покрывающий слой секция может включать относительно толстую ферромагнитную часть для исключения сминания нагревателя в проходящей через покрывающий слой секции. В определенных вариантах выполнения нагреватель может отдавать некоторое количество тепла в покрывающий слой. Тепло, подаваемое в покрывающий слой, может воспрещать дефлегмацию или конденсацию флюидов пласта (например, воды, бензина) в скважине. Дефлегмирующие флюиды могут использовать большую часть тепловой энергии, подаваемой в целевую секцию пласта, ограничивая, тем самым, перенос тепла из скважины в целевую секцию. Нагреватель с ограниченной температурой может состоять из секций, которые соединены (например, сварены) друг с другом. Секции могут иметь длину около 10 м. Конструкционные материалы для каждой секции можно выбирать для обеспечения избирательного выхода тепла для разных частей пласта. Например, пласт нефтеносных сланцев может содержать слои с сильно изменяющейся продуктивностью. Обеспечение выбранного количества тепла для отдельных слоев или нескольких слоев с аналогичной продуктивностью может улучшать эффективность нагревания пласта и/или исключать разрушение скважины. Между секциями может быть образована стыковочная секция, например, посредством сварки внутренних проводников, заполнения стыковочной секции изолятором и затем сварки наружных проводников. В качестве альтернативного решения нагреватель можно формировать из труб большого диаметра и вытягивать до желаемой длины и диаметра. Изолирующий слой оксида магния можно добавлять с помощью способа типа сваривать-заполнять-вытягивать (начиная с металлической полосы) или способа типа заполнять-вытягивать (начиная с труб), хорошо известных в промышленности изготовления нагревательных кабелей с минеральной изоляцией. Сборку и заполнение можно выполнять в горизонтальном или вертикальном положении. Конечный узел нагревателя можно наматывать на барабан большого диаметра (например, около 6 м в диаметре) и транспортировать на площадку пласта для подземного развертывания. В качестве альтернативного решения нагреватель можно собирать на площадке секциями по мере вертикального опускания нагревателя в скважину. Нагреватель с ограниченной температурой может быть однофазным нагревателем или трехфазным нагревателем. В варианте выполнения с трехфазным нагревателем нагреватель может иметь конфигурацию треугольника или звезды. Каждый из трех ферромагнитных проводников в трехфазном нагревателе может быть внутри отдельной оболочки. Соединение между проводниками может быть выполнено на дне нагревателя внутри стыковочной секции. Три проводника могут оставаться изолированными от оболочки внутри стыковочной секции. В некоторых вариантах выполнения нагреватель с ограниченной температурой может включать единственный ферромагнитный проводник с возвращением тока через пласт. Нагревательный элемент может быть ферромагнитной трубой (например, из нержавеющей стали 446 (с 25% хрома и температурой Кюри свыше около 620 С), покрытой сверху нержавеющей сталью 304 Н, 316 Н или 347 НН), которая проходит через нагреваемую целевую секцию и входит в электрический контакт с пластом в электрически контактирующей секции. Электрически контактирующая секция может быть расположена ниже нагреваемой целевой секции (например, в подстилающем слое пласта). В одном варианте выполнения электрически контактирующая секция может быть секцией глубиной около 60 м со скважиной большого диаметра. Труба в электрически контактирующей секции может быть из металла с высокой электрической проводимостью. Кольцевое пространство в электрически контактирующей секции может быть заполнено контактным материалом или раствором, таким как соляной раствор или другие материалы, которые увеличивают электрический контакт с пластом (например, с каплями металла, гематитом). Электрически контактирующая секция может быть расположена в насыщенной соляным раствором зоне для поддержания контакта через соляной раствор. В электрически контактирующем слое диаметр трубы может быть также увеличен для обеспечения максимального тока в пласте с небольшим рассеянием тепла в флюидах. Ток может проходить через ферромагнитную трубу в нагреваемой секции и нагревать трубу. На фиг 39 показан вариант выполнения нагревателя с ограниченной температурой с возвратом тока через пласт. Нагревательный элемент 212 может быть размещен в отверстии 118 в углеводородном слое 120. Нагревательный элемент 210 может быть из нержавеющей стали 446, покрытой сверху трубой из нержавеющей стали 304 Н, которая проходит через углеводородный слой 120. Нагревательный элемент 212 может быть соединен с контактным элементом 214. Контактный элемент 214 может иметь более высокую электрическую проводимость, чем нагревательный элемент 212. Контактный элемент 214 может- 26009586 быть расположен в электрически контактирующей секции 216, расположенной ниже углеводородного слоя 120. Контактный элемент 214 осуществляет электрический контакт с землей в электрически контактирующей секции 216. Контактный элемент 214 может быть расположен в контактирующей скважине 218. Контактный элемент 214 может иметь диаметр приблизительно между 10 и 20 см (например, около 15 см). Диаметр контактного элемента 214 можно выбирать для увеличения контактной поверхности между контактным элементом 214 и контактным раствором 220. Контактную поверхность можно увеличить посредством увеличения диаметра контактного элемента 214. Увеличение диаметра контактного элемента 214 может увеличивать контактную поверхность без большого увеличения стоимости установки и использования контактного элемента, контактной скважины 218 и/или контактного раствора 220. Увеличение диаметра контактного элемента 214 может обеспечивать сохранение достаточного электрического контакта между контактным элементом и электрически контактирующей секцией 216. Увеличение контактной поверхности воспрещает также испарение или кипение контактного раствора 220. Контактирующая скважина 218 может быть, например, секцией глубиной около 60 м с диаметром скважины, превышающим диаметр отверстия 118. Кольцевое пространство контактирующей скважины 218 может быть заполнено контактным раствором 220. Контактный раствор 220 может быть соляным раствором или другим материалом, который облегчает электрический контакт с электрически контактирующей секцией 216. В некоторых вариантах выполнения электрически контактирующая секция 216 является насыщенной водой зоной, которая поддерживает электрический контакт через соляной раствор. Контактирующая скважина 218 может быть расширена до большего диаметра (например, диаметра между около 25 и около 50 см) для обеспечения прохождения максимального тока в электрически контактирующую секцию 216 с низким выходом тепла. Ток может проходить через нагревательный элемент 212 с выкипанием влаги из скважины и нагреванием, пока выход тепла не уменьшится вблизи или при температуре Кюри. В одном варианте выполнения трехфазный нагреватель с ограниченной температурой может быть выполнен с соединением по току через пласт. Каждый нагреватель может включать единственный нагревательный элемент с температурой Кюри, при этом электрически контактирующая секция находится в насыщенной соляным раствором зоне ниже нагреваемой целевой секции. В одном варианте выполнения три таких нагревателя можно электрически соединять на поверхности по схеме трехфазной звезды. Нагреватели можно развертывать с поверхности по треугольной схеме. В определенных вариантах выполнения ток возвращается через землю к нейтральной точке между тремя нагревателями. Трехфазные нагреватели с температурой Кюри можно повторять по схеме, которая покрывает весь пласт. На фиг. 40 показан вариант выполнения трехфазного нагревателя с ограниченной температурой с соединением по току через пласт. Плечи 222, 224, 226 могут быть расположены в пласте. Каждое плечо 222, 224, 226 может иметь нагревательный элемент 212, расположенный в каждом отверстии 118 в углеводородном слое 120. Каждое плечо может иметь контактный элемент 214, расположенный в контактном растворе 220 в контактирующей скважине 218. Каждый контактный элемент 214 может быть соединен с электрически контактирующей секцией 216 через контактный раствор 220. Плечи 222, 224, 226 могут быть соединены по схеме звезды, что приводит к появлению нейтральной точки в электрически проводящей секции 216 между тремя плечами. На фиг. 41 показан на виде сверху вариант выполнения согласно фиг. 40, при этом нейтральная точка 228 расположена центрально между плечами 222, 224, 226. Секция нагревателя, проходящая через зону с высокой теплопроводностью, может быть выполнена с возможностью обеспечения большего рассеяния тепла в зоне с высокой теплопроводностью. Подгонку нагревателя можно выполнять посредством изменения площади поперечного сечения нагревательных элементов (например, посредством изменения отношения площади элемента из меди к элементу из железа) и/или использования различных металлов в нагревательных элементах. Теплопроводность изолирующего слоя можно также изменять в определенных секциях для управления выходом тепла с целью повышения или уменьшения кажущейся температуры Кюри. В одном варианте выполнения нагреватель с ограниченной температурой может включать полый сердечник или полый внутренний проводник. Слои, образующие нагреватель, могут быть перфорированы для обеспечения прохождения флюидов из скважины (например, флюидов пласта, воды) в полый сердечник. Флюиды в полом сердечнике можно транспортировать (например, нагнетать) на поверхность через полый сердечник. В некоторых вариантах выполнения нагреватель с ограниченной температурой с полым сердечником или полым внутренним проводником можно использовать в качестве нагревающей/добывающей скважины или добывающей скважины. В одном варианте выполнения нагреватель с ограниченной температурой можно использовать в горизонтальной нагревательной/добывающей скважине. Нагреватель с ограниченной температурой может обеспечивать выбранное количество тепла в "пальце" и "пятке" горизонтальной части скважины. Больше тепла можно подавать в пласт через палец, чем через пятку, с образованием горячей части у пальца и теплой части у пятки. На фиг. 42 показана зависимость электрического сопротивления от температуры при различных величинах подаваемого электрического тока для стержня из нержавеющей стали 446 с диаметром около 2,5 см и стержня из нержавеющей стали 410 с диаметром около 2,5 см. Кривые 230-236 показывают профиль- 27009586 сопротивления в зависимости от температуры для стержня из нержавеющей стали 446 при переменном токе 440 А (кривая 230), 450 А (кривая 232), 500 А (кривая 234) и постоянном токе 10 А (кривая 236). Кривые 238-244 показывают профиль сопротивления в зависимости от температуры для стержня из нержавеющей стали 410 при переменном токе 400 А (кривая 238), 450 А (кривая 240), 500 А (кривая 242) и постоянном токе 10 А (кривая 244). Для обоих стержней сопротивление постепенно увеличивается с увеличение температуры, пока не будет достигнута температура Кюри. При температуре Кюри сопротивление резко падает. Свыше температуры Кюри сопротивление слегка уменьшается при увеличении температуры. Оба стержня проявляют тенденцию к снижению сопротивления при увеличении переменного тока. В соответствии с этим уменьшается отношение уменьшения при увеличении тока. В противоположность этому, сопротивление постепенно увеличивается при увеличении температуры, включая температуру Кюри, при подаче постоянного тока. На фиг. 43 показана зависимость электрического сопротивления от температуры при различных величинах подаваемого тока для нагревателя с ограниченной температурой. Нагреватель с ограниченной температурой включает печной кабель 4/0 MGT-1000 внутри наружного проводника режима 80 Sandvik(Швеция) 4 С 54 (из нержавеющей стали 446) с диаметром 3/4 дюйма (19 мм) и медную оболочку толщиной 0,3 см, приваренную снаружи наружного проводника Sandvik 4C54. Кривые 246-264 показывают профили сопротивления в зависимости от температуры для подаваемого переменного тока в диапазоне от 40 до 500 А (246: 40 А, 248: 80 А, 250: 120 А, 252: 160 А, 254: 250 А, 256: 300 А, 258: 350 А, 260: 400 А,262: 450 А, 264: 500 А). При низких токах (ниже 250 А) сопротивление увеличивается при увеличении температуры до температуры Кюри. При температуре Кюри сопротивление резко падает. При больших токах (свыше 250 А) сопротивление слегка уменьшается с увеличением температуры до температуры Кюри. При температуре Кюри сопротивление резко падает. Кривая 266 показывает сопротивление при подаче постоянного электрического тока 10 А. Кривая 266 показывает постепенное увеличение сопротивления с увеличением температуры с небольшим отклонением или без отклонения при температуре Кюри. На фиг. 44 показана зависимость мощности от температуры при различных величинах подаваемого тока для нагревателя с ограниченной температурой. Кривые 268-276 показывают зависимость мощности от температуры для подаваемого переменного тока в диапазоне от 300 до 500 А (268: 300 А, 270: 350 А,272: 400 А, 274: 450 А, 276: 500 А). При увеличении температуры постепенно уменьшается мощность до достижения температуры Кюри. При температуре Кюри мощность резко уменьшается. На фиг. 46 показаны величины толщины скин-слоя в зависимости от температуры для сплошного стержня из нержавеющей стали 410 с диаметром 2,54 см при различном переменном токе. Толщина скин-слоя вычислена с использованием формулы 2: гдеявляется толщиной скин-слоя, R1 - радиус цилиндра, RAC - сопротивление переменному току и RDC сопротивление постоянному току. На фиг. 46 кривые 292-310 показывают профили толщины скин-слоя в зависимости от температуры для подаваемого переменного тока в диапазоне от 50 до 500 А (292: 50 А,294: 100 А, 296: 150 А, 298: 200 А, 300: 250 А, 302: 300 А, 304: 350 А, 306: 400 А, 308: 450 А, 310: 500 А). При каждом подаваемом переменном электрическом токе глубина скин-слоя постепенно увеличивается при увеличении температуры до температуры Кюри. При температуре Кюри глубина скин-слоя резко увеличивается. На фиг. 47 показана зависимость температуры от времени для нагревателя с ограниченной температурой. Нагреватель с ограниченной температурой имел длину около 2 м и включал медный стержень с диаметром около 1,25 см внутри трубы режима ХХН из нержавеющей стали 410 и медной оболочки толщиной 0,13 см. Нагреватель помещали в печь для нагревания. При нахождении нагревателя в печи в него подавали переменный ток. Ток увеличивали приблизительно в течение 2 ч, и он оставался на относительно неизменной величине около 400 А в остальное время. Температуру трубы из нержавеющей стали измеряли в трех точках с интервалом около 0,5 м по длине нагревателя. Кривая 316 показывает температуру трубы в точке, расположенной около 0,5 м внутри печи и наиболее близкой к передней части нагревателя. Кривая 314 показывает температуру трубы в точке, расположенной около 0,5 м от конца трубы и наиболее далеко от передней части нагревателя. Кривая 312 показывает температуру трубы вблизи центральной точки нагревателя. Точка у центра нагревателя была дополнительно заключена на отрезке длиной 30 см в изоляцию Fiberfrax толщиной 2,54 см. Изоляция использовалась для создания секции низкой теплопроводности на нагревателе (т.е. секции, где перенос тепла в окружение замедлен или исключен (горячий участок). Секция низкой теплопроводности может представлять, например, богатый слой в содержащем углеводороды пласте (например, пласте нефтеносных сланцев). Температура нагревателя повышается со временем, как показывают кривые 312, 314 и 316. Кривые 312, 314 и 316 показывают, что температура нагревателя увеличивается до примерно одинаковой величины во всех трех точках по длине нагревателя. Достигнутые температуры были, по существу, независимы от добавленной изоляции Fiberfrax. Таким образом, нагреватель с ограниченной температурой не превышал выбранного предела температуры в присутствии секции с низкой теплопроводностью. На фиг. 48 показана зависимость температуры от логарифма времени для стержня из нержавеющей- 28009586 стали 410 и стержня из нержавеющей стали 304. При неизменном подаваемом переменном электрическом токе температура каждого стержня увеличивалась со временем. Кривая 322 показывает данные для термопары, расположенной на наружной поверхности стержня из нержавеющей стали 304 и под слоем изоляции. Кривая 324 показывает данные для термопары, расположенной на наружной поверхности стержня из нержавеющей стали 304 и без слоя изоляции. Кривая 318 показывает данные для термопары,расположенной на наружной поверхности стержня из нержавеющей стали 410 и под слоем изоляции. Кривая 320 показывает данные для термопары, расположенной на наружной поверхности стержня из нержавеющей стали 410 и без слоя изоляции. Сравнение кривых показывает, что температура стержня из нержавеющей стали 304 (кривые 322 и 324) повышается быстрее, чем температура стержня из нержавеющей стали 410 (кривые 318 и 320). Температура стержня из нержавеющей стали 304 (кривые 322 и 324) также достигает более высоких величин, чем температура стержня из нержавеющей стали 410 (кривые 318 и 320). Разница температур между неизолированной секцией стержня из нержавеющей стали 410(кривая 320) и изолированной секцией стержня из нержавеющей стали 410 (кривая 318) была меньше разницы температур между неизолированной секцией стержня из нержавеющей стали 304 (кривая 324) и изолированной секцией стержня из нержавеющей стали 304 (кривая 322). Температура стержня из нержавеющей стали 304 увеличивалась в конце эксперимента, в то время как температура стержня из нержавеющей стали 410 стабилизировалась. Цифровое моделирование (с использованием компьютерной программы FLUENT) использовалось для сравнения работы нагревателей с ограниченной температурой с тремя отношениями уменьшения. Моделирование выполнялось для нагревателей в пласте нефтеносных сланцев (нефтеносных сланцевGreen River). Условия моделирования: 61 м длина нагревателей с температурой Кюри типа проводник в канале (центральный проводник с диаметром около 2,54 см, канал с наружным диаметром около 7,3 см); профиль продуктивности пласта для тестирования нагревателя в скважине для пласта нефтеносных сланцев; скважины с диаметром около 16,5 см с расстоянием около 9,14 м между скважинами при расположении в форме треугольника; 200 ч линейного увеличения мощности до начальной скорости ввода тепла 820 Вт/м; работа с неизменным током после наращивания мощности; температура Кюри нагревателя 720,6 С; пласт набухает и касается фильтров нагревателя при продуктивности нефтеносных сланцев более 35 гал/т (0,14 л/кг). На фиг. 49 показано изменение температуры центрального проводника нагревателя типа проводник в канале в зависимости от глубины пласта для нагревателя с температурой Кюри с отношением уменьшения 2:1. Кривые 326-348 показывают профили температуры в пласте в различное время, начиная с 8 суток после начала нагревания и до 675 суток после начала нагревания (326: 8 суток, 328: 50 суток, 330: 91 сутки, 332: 133 суток, 334: 216 суток, 336: 300 суток, 338: 383 суток, 340: 466 суток, 342: 550 суток, 344: 591 сутки, 346: 633 суток, 348: 675 суток). При отношении уменьшения 2:1 температура Кюри 720,6 С была превышена после около 466 суток в наиболее богатых слоях нефтеносных сланцев. На фиг. 50 показан соответствующий поток тепла нагревателя через пласт для отношения уменьшения 2:1 вместе с профилем продуктивности нефтеносных сланцев (кривая 384). Кривые 350-382 показывают профили потока тепла в различное время, начиная с 8 суток после начала нагревания и до 675 суток после начала нагревания (350: 8 суток, 352: 50 суток, 354: 91 сутки, 356: 133 суток, 358: 175 суток, 360: 216 суток, 362: 258 суток, 364: 300 суток, 366: 341 сутки, 368: 383 суток, 370: 425 суток, 372: 466 суток, 374: 508 суток, 376: 508 суток, 378: 591 сутки, 380: 633 суток, 382: 675 суток). При отношении уменьшения 2:1 температура центрального проводника превышала температуру Кюри в наиболее богатых слоях нефтеносных сланцев. На фиг. 51 показано изменение температуры нагревателя в зависимости от глубины пласта для отношения уменьшения 3:1. Кривые 386-408 показывают профили температуры в пласте в различное время, начиная с 12 суток после начала нагревания и до 703 суток после начала нагревания (386: 12 суток,388: 33 суток, 390: 62 сутки, 392: 102 сутки, 394: 146 суток, 396: 205 суток, 398: 271 сутки, 400: 354 суток, 402: 467 суток, 404: 605 суток, 406: 662 суток, 408: 703 суток). При отношении уменьшения 3:1 температура Кюри была примерно достигнута после 703 суток. На фиг. 52 показан соответствующий поток тепла нагревателя через пласт для отношения уменьшения 3:1 вместе с профилем продуктивности нефтеносных сланцев (кривая 432). Кривые 410-430 показывают профили потока тепла в различное время,начиная с 12 суток после начала нагревания и до 749 суток после начала нагревания (410: 12 суток, 412: 32 сутки, 414: 62 сутки, 416: 102 сутки, 418: 146 суток, 420: 205 суток, 422: 271 сутки, 424: 354 суток,426: 467 суток, 428: 605 суток, 430: 749 суток). При отношении уменьшения 3:1 температура центрального проводника никогда не превышала температуру Кюри. Кроме того, температура центрального проводника имела относительно плоский профиль температуры для отношения уменьшения 3:1. На фиг. 53 показано изменение температуры нагревателя в зависимости от глубины пласта для отношения уменьшения 4:1. Кривые 434-454 показывают профили температуры в пласте в различное время, начиная с 12 суток после начала нагревания и до 678 суток после начала нагревания (434: 12 суток,- 29009586 436: 33 суток, 438: 62 сутки, 440: 102 сутки, 442: 147 суток, 444: 205 суток, 446: 272 сутки, 448: 354 суток, 450: 467 суток, 452: 606 суток, 454: 678 суток). При отношении уменьшения 4:1 температура Кюри не была превышена даже после 678 суток. При отношении уменьшения 4:1 температура центрального проводника никогда не превышала температуру Кюри. Кроме того, профиль температуры центрального проводника для отношения уменьшения 4:1 был несколько более плоским, чем профиль температуры для отношения уменьшения 3:1. Моделирование показало, что температура нагревателя остается равной или ниже температуры Кюри в течение длительного времени при более высоких отношениях уменьшения. Для этого профиля продуктивности нефтеносных сланцев может быть желательным отношение уменьшения более 3:1. Для предсказания поведения ферромагнитного материала и/или других материалов во время нагревания пласта можно использовать аналитические решения для проводимости переменного тока ферромагнитных материалов. Проводимость переменного тока проволоки равномерного поперечного сечения,изготовленной из ферромагнитного материала, можно определить аналитически. Для провода с радиусомd магнитную проницаемость, диэлектрическую проницаемость и электрическую проводимость можно обозначить, соответственно, ,и . Параметррассматривается как постоянная величина (т.е. не зависящая от силы магнитного поля). Уравнения Максвелла гласят: Уравнениями для проводника для связи полей являются Подстановка уравнений 7 в уравнения 3-6 при =0 и соотношения и дает следующие уравнения: и Следует отметить, что уравнение 12 вытекает из уравнения 13. После вычисления дивергенции взяв ротор уравнения 11 с использованием того факта, что для любой векторной функции F и применяя уравнение 10, выводим где при этом Для цилиндрического провода принимается что означает, что Es (r) удовлетворяет условию Общим решением для уравнения 19 является В должно обращаться в ноль, поскольку K0 является сингулярным при r=0, так что получаем
МПК / Метки
МПК: E21B 36/04
Метки: пластов, нагревания, нагреватели, подземных, температурой, ограниченной, скважин
Код ссылки
<a href="https://eas.patents.su/30-9586-nagrevateli-s-ogranichennojj-temperaturojj-dlya-nagrevaniya-podzemnyh-plastov-ili-skvazhin.html" rel="bookmark" title="База патентов Евразийского Союза">Нагреватели с ограниченной температурой для нагревания подземных пластов или скважин</a>