Способ разделения газового потока (варианты)
Номер патента: 3854
Опубликовано: 30.10.2003
Авторы: Пирс Майкл К., Уилкинсон Джон Д., Хадсон Хэнк М., Кэмпбел Рой Э.
Формула / Реферат
1. Способ разделения газового потока, включающего в себя метан, C2-компоненты, C3-компоненты и компоненты высших углеводородов, на летучую фракцию остаточного газа, включающую в себя большую часть указанного метана, и фракцию относительно меньшей летучести, включающую в себя большую часть указанных C2-компонентов, C3-компонентов и компонентов высших углеводородов, в котором
a) указанный газовый поток обрабатывают на одной или нескольких стадиях теплообмена и, по меньшей мере, на одной стадии разделения, для получения, по меньшей мере, первого входящего потока, охлаждаемого под давлением для конденсации, по существу, всего потока, и, по меньшей мере, второго входящего потока, охлаждаемого под давлением,
b) указанный, по существу, конденсированный первый входящий поток расширяют до более низкого давления, в силу чего он дополнительно охлаждается, и затем подают во фракционирующую колонну в верхней точке подачи,
c) указанный охлажденный второй входящий поток расширяют до указанного более низкого давления и затем подают во фракционирующую колонну в средней точке подачи, и
d) указанные охлажденный расширенный первый и расширенный второй потоки подвергают фракционированию при указанном более низком давлении с извлечением компонентов указанной фракции относительно меньшей летучести,
при этом
1) дистиллят выводят из указанной фракционирующей колонны и нагревают,
2) нагретый дистиллят возвращают в более низкую точку фракционирующей колонны, отделенную от точки вывода, по меньшей мере, одной теоретической тарелкой, причем
3) количества и температуры указанных входящих потоков в указанную фракционирующую колонну достаточны для поддержания верхней части фракционирующей колонны при температуре, обеспечивающей извлечение большей части компонентов указанной фракции относительно меньшей летучести.
2. Способ разделения газового потока, включающего в себя метан, C2-компоненты, C3-компоненты и компоненты высших углеводородов, на летучую фракцию остаточного газа, включающую в себя большую часть указанного метана, и фракцию относительно меньшей летучести, включающую в себя большую часть указанных C2-компонентов, C3-компонентов и компонентов высших углеводородов, в котором
a) выведенную из фракционирующей колонны летучую фракцию остаточного газа сжимают и часть выводят для формирования сжатого первого потока,
b) указанный сжатый первый поток охлаждают под давлением для конденсации, по существу, всего потока,
c) указанный, по существу, конденсированный первый поток расширяют до более низкого давления, в силу чего он дополнительно охлаждается, и затем подают во фракционирующую колонну в верхней точке подачи,
d) указанный газовый поток обрабатывают на одной или нескольких стадиях теплообмена с образованием, по меньшей мере, второго потока, который охлаждают под давлением,
e) указанный охлажденный второй поток расширяют до указанного более низкого давления и затем подают в фракционирующую колонну в средней точке подачи, и
f) указанные охлажденный расширенный первый и второй расширенный потоки подвергают фракционированию при указанном более низком давлении с извлечением компонентов указанной фракции относительно меньшей летучести, при этом
1) дистиллят выводят из указанной фракционирующей колонны и нагревают, и
2) нагретый дистиллят возвращают в более низкую точку фракционирующей колонны, отделенную от точки вывода, по меньшей мере, одной теоретической тарелкой, причем
3) количества и температуры указанных потоков, входящих в фракционирующую колонну, достаточны для поддержания верхней части фракционирующей колонны при температуре, обеспечивающей извлечение большей части компонентов указанной фракции относительно меньшей летучести.
3. Способ по п.1 или 2, отличающийся тем, что указанный дистиллят перекачивают после выведения из указанной фракционирующей колонны.
4. Способ по п.3, отличающийся тем, что
a) указанный перекаченный дистиллят разделяют, по меньшей мере, на первую и вторую части,
b) указанную первую часть нагревают, и
c) нагретую первую часть возвращают в более низкую точку фракционирующей колонны, отделенную от точки вывода, по меньшей мере, одной теоретической тарелкой.
5. Способ по п.1 или 2, отличающийся тем, что указанный дистиллят нагревают путем теплообмена, по меньшей мере, с частью указанного газового потока или указанных входящих потоков для их охлаждения.
6. Способ по п.3, отличающийся тем, что указанный перекаченный дистиллят нагревают путем теплообмена, по меньшей мере, с частью указанного газового потока или указанных входящих потоков для их охлаждения.
7. Способ по п.4, отличающийся тем, что указанную первую часть нагревают путем теплообмена, по меньшей мере, с частью указанного газового потока или указанных входящих потоков для их охлаждения.
8. Способ по п.1 или 2, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
9. Способ по п.3, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
10. Способ по п.4, отличающийся тем, что количество и температура указанной нагретой первой части и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
11. Способ по п.5, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
12. Способ по п.6, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
13. Способ по п.7, отличающийся тем, что количество и температура указанной нагретой первой части и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
Текст
1 Предпосылки создания изобретения Изобретение относится к способу разделения содержащего углеводороды газа. Этилен, этан, пропилен, пропан и/или высшие углеводороды могут быть извлечены из различных газов, таких как природный газ, газ нефтепереработки и потоки синтетического газа, полученные из других углеводородных материалов, таких как уголь, сырая нефть, нафта,битумный сланец, битуминозные пески и лигнит. Обычно большую часть природного газа составляют метан и этан, т.е. метан и этан вместе представляют не менее 50 мол.% газа. Газ также содержит относительно меньшие количества высших углеводородов, таких как пропан,бутаны, пентаны, а также водород, азот, диоксид углерода и другие газы. Настоящее изобретение, в основном, касается извлечения этилена, этана, пропилена, пропана и высших углеводородов из таких газовых потоков. В типичном случае газовый поток, обрабатываемый в соответствии с изобретением,может включать (по результатам анализа) в мол.% 92,12 метана, 3,96 этана и других С 2 компонентов, 1,05 пропана и других С 3 компонентов, 0,15 изобутана, 0,21 нормального бутана, 0,11 пентанов+, остальное - азот и диоксид углерода. Иногда также присутствуют содержащие серу газы. Исторически циклические изменения цен на природный газ и продукты сжижения природного газа (NGL) иногда приводят к уменьшению объемов производства этана, этилена,пропана, пропилена и высших углеводородов в виде жидких продуктов. Конкуренция в области прав на обработку принуждает владельцев обрабатывающих установок максимально увеличить производительность и эффективность извлечения существующих газообрабатывающих установок. Имеющиеся процессы для разделения этих материалов включают в себя процессы, основанные на охлаждении и охлаждении газа, абсорбции нефтепродуктов и абсорбции охлажденных нефтепродуктов. Кроме того, низкотемпературные процессы становятся популярными вследствие наличия экономически выгодного оборудования, которое генерирует энергию при одновременном расширении обрабатываемого газа и извлечении из него теплоты. В зависимости от давления источника газа, насыщенности газа компонентами (этан, этилен и высшие углеводороды) и нужных конечных продуктов можно применять каждый из этих процессов или их комбинации. Сейчас, в основном, для извлечения продуктов сжижения природного газа предпочтителен низкотемпературный (криогенный) процесс расширения, так как он обеспечивает максимальную простоту при легком пуске, эксплуатационную приспособляемость, производительность, безопасность и надежность. В патентах 2 США 4157904, 4171964, 4185978, 4251249,4278457, 4519824, 4617039, 4687499, 4689063,4690702, 4854955, 4869740, 4889545, 5275005,5555748, 5568737, 5771712, 5799507, 5881569,5890378, переизданном патенте США 33408 и одновременно рассматриваемой заявке 09/054802 приведены релевантные процессы(хотя описание настоящего изобретения в некоторых случаях основано на условиях обработки,отличающихся от приведенных в противопоставленных патентах США и патентных заявках). В типичном процессе извлечения с низкотемпературным расширением поток исходного газа под давлением охлаждается при теплообмене с другими потоками процесса и/или внешними источниками охлаждения, такими как холодильная установка на пропане. Когда газ охлаждается, жидкости могут конденсироваться и собираться в один или несколько сепараторов в качестве жидкостей высокого давления, содержащих некоторые нужные С 2+компоненты. В зависимости от насыщенности газа компонентами и количества образующихся жидкостей жидкости высокого давления можно расширить до низкого давления и подвергнуть фракционированию. Испарение, происходящее при расширении жидкостей, приводит к дальнейшему охлаждению потока. При некоторых условиях может быть полезным предварительное охлаждение жидкостей высокого давления перед расширением, чтобы дополнительно снизить температуру, возникающую в результате расширения. Расширенный поток, представляющий собой смесь жидкости и пара, подвергают фракционированию в дистилляционной колонне (деметанизаторе). В колонне охлажденный(e) при расширении поток(и) разделяется(ются) на остаточный метан,азот и другие летучие газы в виде отводимого с верха колонны пара и на нужные С 2-компоненты,С 3-компоненты и высшие углеводороды в виде нижнего жидкого продукта. Если исходный газ не полностью конденсируется (что обычно), то, по меньшей мере,часть пара, оставшегося от частичной конденсации, можно пропустить через расширительную машину или двигатель или расширительный клапан до более низкого давления, при котором дополнительные жидкости конденсируются в результате дальнейшего охлаждения потока. Давление после расширения, в сущности, такое же, как и давление, при котором работает дистилляционная колонна. Комбинированные парожидкостные фазы, возникающие в результате расширения, поступают как подача в колонну. В последние годы предпочтительные процессы для разделения углеводородов включают подачу такого расширенного парожидкостного потока в среднюю точку подачи колонны при наличии верхнего абсорбера, обеспечивающего дополнительную ректификацию паровой фазы. Источником потока флегмы для верхней ректификационной секции обычно является 3 часть вышеупомянутого пара, оставшегося после частичной конденсации исходного газа,только отводимого перед расширением. Альтернативным источником для верхнего потока флегмы может быть рецикловый поток остаточного газа, подаваемого под давлением. Независимо от источника поток пара обычно охлаждается до существенной степени конденсации теплообменом с другими потоками процесса, например холодным потоком, отбираемым с верха фракционирующей колонны. Часть или вся жидкость высокого давления, образующаяся при частичной конденсации исходного газа,может быть объединена с указанным потоком пара перед охлаждением. Полученный существенно конденсированный поток затем расширяется в подходящем устройстве, таком как расширительный клапан, до давления, при котором работает деметанизатор. Во время расширения часть жидкости обычно испаряется, приводя к охлаждению общего потока. Мгновенно расширенный поток поступает в деметанизатор как верхняя подача. Типично часть пара расширенного потока и отбираемый с верха деметанизатора пар объединяются в верхней сепараторной секции фракционирующей колонны как остаточный газообразный продуктовый метан. В варианте исполнения охлажденный и расширенный поток может поступать в сепаратор с образованием потоков пара и жидкости. После этого пар объединяется с потоком, отбираемым с верха колонны; жидкость поступает в колонну как верхняя подача. Задача способа - осуществить разделение с получением остаточного газа, выводимого из процесса и содержащего, по существу, весь метан исходного газа и не содержащего C2 компонентов и высших углеводородов, и нижних фракций, выводимых из деметанизатора и содержащих, по существу, все С 2-компоненты и высшие углеводороды и практически не содержащих метана или других летучих компонентов. При этом удовлетворяются технические условия установки по максимально допустимому содержанию диоксида углерода. Настоящее изобретение предлагает средство для создания новой установки или модифицирования существующей обрабатывающей установки таким образом,чтобы достичь указанного разделения при значительно болеенизких капитальных затратах путем уменьшения размера системы обработки продукта для удаления диоксида углерода или исключения необходимости применения такой установки. В варианте исполнения настоящее изобретение, применяется ли оно в новой установке или для модификации существующей обрабатывающей установки, может быть использовано, чтобы извлечь большее количество С 2-компонентов и высших углеводородов в нижнем жидком продукте для данной концентрации диоксида углерода в исходном газе, чем другие схемы обработки. 4 В соответствии с настоящим изобретением найдено, что извлечение С 2-компонентов можно поддерживать на уровне более 84% при сохранении содержания диоксида углерода в нижнем жидком продукте в пределах технических условий и обеспечении, по существу, полного выхода метана в остаточный газовый поток. Настоящее изобретение, хотя и можно применять при более низких давлениях и более теплых температурах, особенно перспективно, когда обработка исходных газов ведется при давлениях 6001000 фунт/кв.дюйм или выше в условиях, требующих температуры отбираемого с верха колонны потока -120F (-84,45C) или холоднее. Настоящее изобретение применяет модифицированную схему кипятильника, которую можно использовать с системой извлеченияNGL любого типа. В случае использования типичного кипятильника или бокового кипятильника в дистилляционной колонне весь стекающий по колонне жидкий поток отбирается из колонны, проходит через теплообменник и затем возвращается практически в ту же точку колонны. В модифицированной системе кипятильника часть стекающей по колонне жидкости отбирается из точки, расположенной выше, т.е. отделенной от точки возврата, по меньшей мере,одной теоретической тарелкой. Даже если расход жидкости ниже, она обычно много холоднее и может иметь преимущество, которое касается уменьшения размера теплообменника или улучшения извлечения. Найдено, что, когда настоящее изобретение применяется к известным процессам извлечения NGL (продукт сжижения природного газа), извлечение С 2-компонентов и высших углеводородов улучшается на 1-2%. Однако улучшение извлечения много больше, когда желательно снизить содержание диоксида углерода в извлекаемом NGL. Извлечение этана в типичной установке извлечения NGL также приводит к извлечению некоторой части диоксида углерода, содержащегося в исходном газе, вследствие того, что значение относительной летучести диоксида углерода находится между таковыми значениями для метана и этана. Следовательно,при увеличении извлечения этана происходит извлечение диоксида углерода в NGL. При использовании модифицированной схемы кипятильника настоящего изобретения заявители нашли, что можно значительно увеличить извлечение этана в NGL по сравнению с использованием обычных систем кипятильника или бокового кипятильника, чтобы удовлетворить техническое условие по содержанию диоксида углерода в NGL. Для более полного понимания настоящего изобретения сделаны ссылки на следующие примеры и чертежи, где фиг. 1 - схема потоков известной установки (прототип) низкотемпературной обработки природного газа; 5 фиг. 2 - схема потоков варианта приспособления известной установки низкотемпературной обработки природного газа; фиг. 3 - схема потоков, иллюстрирующая,как установки по фиг. 1 и 2 можно приспособить для создания установки обработки природного газа в соответствии с настоящим изобретением; фиг. 4 - схема потоков, иллюстрирующая вариант приспособления фиг. 1 и 2 для создания установки обработки природного газа в соответствии с настоящим изобретением; фиг. 5 - схема потоков, иллюстрирующая,как вариант известного процесса можно приспособить для создания установки обработки природного газа в соответствии с настоящим изобретением; фиг. 6 - схема, иллюстрирующая схему модифицированного кипятильника настоящего изобретения для установки обработки, в которой схема включает в себя термосифонную систему; фиг. 7 - схема, иллюстрирующая схему модифицированного кипятильника настоящего изобретения для установки обработки, в которой схема включает в себя систему нагнетания; фиг. 8 - схема, иллюстрирующая схему модифицированного кипятильника настоящего изобретения для установки обработки, в которой схема включает в себя систему нагнетания; фиг. 9 - схема, иллюстрирующая схему модифицированного кипятильника настоящего изобретения для установки обработки, в которой схема включает в себя разделенную колонну. Для объяснения указанных чертежей приводятся таблицы, в которых представлены суммарные расходы, рассчитанные для характерных условий процесса. В таблицах значения расхода (фунтмоль/ч) для удобства округлены до ближайшего целого числа. Общие расходы,показанные в таблицах, включают в себя все неуглеводородные компоненты и, следовательно, больше суммы расходов для углеводородных компонентов. Указанные значения температур округлены до ближайшего градуса. Следует заметить, что расчеты, произведенные в целях сравнения процессов, изображенных на фигурах, основаны на том предположении, что отсутствуют тепловые утечки из окружающей среды в процесс или в окружающую среду из процесса. Качество промышленно доступных изоляционных материалов делаeт такое предположение достаточно разумным и обычно принимается специалистами в этой области техники. Описание уровня техники На фиг. 1 представлена схема потоков процесса, показывающая конструкцию установки обработки для извлечения С 2-компонентов из природного газа с использованием прототипа в соответствии с патентом США 4157904. Так как это большая установка, предназначенная для обработки 1 млрд куб.футов исходного газа(фракционирующая колонна) сконструирован из двух секций, абсорбционной колонны 17 и отпарной колонны 19. В этой модели процесса входящий газ поступает в установку при 86F(4,291 МПа) как поток 31. Если входящий газ содержит некоторую концентрацию соединений серы, которые могут привести к несоответствию потоков продукта техническим условиям, соединения серы удаляют подходящей предварительной обработкой исходного газа (не показано). Кроме того, поток исходного газа обычно дегидратируют, чтобы предотвратить образование гидрата (льда) при низкотемпературных условиях. Для этой цели обычно используется твердый осушитель. Поток 31 входящего газа охлаждается в теплообменнике 10 путем теплообмена с холодным остаточным газом при -99F (-72,78C) (поток 37 а), жидкостями кипятильника деметанизатора при 31F (-0,56C) (поток 42), жидкостями нижнего бокового кипятильника деметанизатора при -5F (-20,55C) (поток 41) и жидкостями верхнего бокового кипятильника деметанизатора при -99F (-72,78C) (поток 40). Отмечено,что во всех случаях теплообменник 10 представляет собой несколько отдельных теплообменников или один многоходовой теплообменник или их комбинации. (Решение, использовать ли более одного теплообменника для указанного охлаждения, будет зависеть от ряда факторов, в том числе расхода входящего газа, размера теплообменника, температуры потоков и т.д., но не ограничивается только ими.) Охлажденный поток 31 а поступает в сепаратор 11 при -82F (-63,33C) и давлении 603 фунт/кв.дюйм (4,221 МПа) для разделения на пар (поток 32) и конденсированную жидкость (поток 35). Пар (поток 32) из сепаратора 11 разделяется на два потока 33 и 34. Поток 33, содержащий 18% общего пара, объединяется с конденсированной жидкостью из сепаратора 11. Объединенный поток 36 проходит через теплообменник 12 в теплообмене с потоком 37 пара, отбираемого с верха деметанизатора, что приводит к охлаждению и существенной конденсации потока. Конденсированный в существенной степени поток 36 а при -139F (-94,99C) затем поступает в устройство для мгновенного расширения, такое как расширительный клапан 13, до рабочего давления (333 фунт/кв.дюйм - 2,331 МПа) абсорбционной колонны 17 фракционирующей колонны. Во время расширения часть потока испаряется, что приводит к охлаждению общего потока. В процессе, показанном на фиг. 1, расширенный поток 36b, выходящий из расширительного клапана 13, достигает температуры -151F(-101,66C) и поступает в секцию сепаратора 17 а в верхней части абсорбционной колонны 17. Отделенные в секции жидкости становятся верхним входящим потоком для теоретической 7 тарелки 1 ректификационной секции 17b. (Вариант перемещения отделенной жидкости (поток 35) в соответствии с патентом США 4278457 указан пунктирной линией, тем самым, по меньшей мере, часть жидкости, расширенной до 333 фунт.кв.дюйм (2,331 МПа) в расширительном клапане 16, охлаждает поток 35 с образованием потока 35 а, который поступает в ректификационную секцию абсорбционной колонны 17 в нижней точке подачи или в отпарную колонну 19 в верхней точке подачи.) Остальные 82% пара из сепаратора 11 (поток 34) поступают в расширительную машину 14, в которой из этой части высокого давления извлекается механическая энергия. В машине 14 пар расширяется, в основном, изоэнтропически (адиабатически) от давления 603 фунт/кв.дюйм (4,221 МПа) до давления 333 фунт/кв.дюйм (2,331 МПа) с охлаждением расширенного потока 34 а до температуры -125F (-87,23C). Типичные промышленно доступные расширители способны извлекать до 80-85% работы от теоретически достижимой в случае идеального изоэнтропического расширения. Извлеченная работа часто используется для привода турбокомпрессора (такого как 15),который может быть, например, использован для повторного сжатия остаточного газа (поток 37 с). Расширенный и частично конденсированный поток 34 а поступает в дистилляционную колонну в нижней точке подачи (ниже теоретической тарелки 7 в этом случае). Жидкости (поток 38) из нижней части абсорбционной колонны 17 при -127F (-88,33 С) перекачиваются насосом 18 в отпарную колонну 19 в верхней точке (поток 38 а). Рабочее давление отпарной колонны 19 (343 фунт/кв.дюйм 2,401 МПа) несколько выше, чем рабочее давление абсорбционной колонны 17, так что перепад давления между двумя колоннами создает движущую силу, под действием которой пары(поток 39), отбираемые с верху отпарной колонны 19 при -125F (-87,2C), поступают в нижнюю точку подачи абсорбционной колонны 17. Деметанизатор (абсорбционная колонна 17 и отпарная колонна 19) представляет собой обычную дистилляционную колонну, имеющую несколько вертикально разнесенных тарелок, один или несколько слоев насадки или комбинацию тарелок и слоев насадки. Как это часто бывает в установках обработки природного газа, абсорбционная колонна может состоять из двух секций. Верхняя секция 17 а представляет собой сепаратор,в котором частично испаренная верхняя подача разделяется на паровую и жидкую части и в которой пар, поднимающийся из нижней дистилляционной или ректификационной секции 17b, объединяется с паровой частью (если присутствует) верхней подачи с образованием потока 37 холодного остаточного газа после дистилляции, который выходит с верха колонны. Нижняя ректификационная секция 17b и отпарная колонна 19,имеющие тарелки и/или насадки, создают необхо 003854 8 димый контакт между стекающими жидкостями и поднимающимися парами. Отпарная колонна 19 также включает в себя кипятильники для нагрева и испарения части жидкостей, стекающих по колонне, чтобы создать отпаривающий пар, поднимающийся по колонне. Жидкий продукт (поток 43) выходит из нижней части колонны при 43F (6,11C) и имеет мольное соотношение метан/этан 0,0237:1,исходя из типичных технических условий на нижний продукт, и нагнетается насосом 20 до давления 550 фунт/кв.дюйм (3,85 МПа) (поток 43 а). Давление на выходе насоса обычно устанавливают по основному назначению жидкого продукта. В основном, жидкий продукт поступает в хранилище, и давление на выходе насоса устанавливают так, чтобы предотвратить испарение потока 43 а, когда он нагревается до окружающей температуры. Остаточный газ (поток 37) проступает противотоком входящему исходному газу в а) теплообменник 12, где нагревается до -99F (-72,78 С)(поток 37 а), b) теплообменник 10, где нагревается до 79F (26,11 С) (поток 37b), и с) теплообменник 21, где нагревается до 110F (43,33C) (поток 37 с). Остаточный газ затем повторно сжимается в две стадии. Первая стадия представляет собой компрессор 15, приводимый расширительной машиной 14, и вторая стадия представляет собой компрессор 22, приводимый дополнительным источником мощности. После охлаждения потока 37 е до 115F (46,11 С) холодильником 23 и до 86F(30C) теплообменником 21 остаточный продуктовый газ (поток 37g) поступает в раздаточный трубопровод при давлении 631 фунт/кв.дюйм(обычно порядка давления на входе). Суммарные расходы потоков и потребление энергии для процесса по фиг. 1 приведены в следующей таблице. Таблица 1(фиг. 1) Суммарные расходы потока (фунтмоль/ч) Поток Метан Этан Пропан Бутаны+ 31 32 35 33 34 38 39 40 37 43(на основе округленных значений расходов) Этан 84,89% Пропан 96,90% Бутаны+ 99,33% Мощность (кВт) Сжатие остаточного газа 33128 9 Как показано в табл. 1, в уровне техники по фиг. 1 извлечение этана достигает 84,89% с использованием мощности сжатия остаточного газа 33570 кВт максимально. Однако концентрация диоксида углерода в продуктовом этане(поток метана, этана и диоксида углерода, который образуется, когда нижний жидкий продукт последовательно фракционируют для отделения С 2-компонентов и низших компонентов от С 3 компонентов и высших углеводородов) составляет 7,59 мол.%, что превышает техническое условие владельца установки в 6 мол.% максимально. Таким образом, в конструкцию установки необходимо вводить систему обработки для удаления диоксида углерода из углеводородов, чтобы получить товарный жидкий продукт. Существует много способов удаления диоксида углерода (обработка входящего исходного газа,обработка общего жидкого продукта, обработка продуктового этана после фракционирования и т.п.), но все эти способы увеличивают не только капитальные затраты установки (из-за стоимости установки системы обработки), но и рабочие затраты установки (из-за расхода энергии и химикатов в системе обработки для удаления диоксида углерода). Один путь для сохранения продуктового этана в пределах технических условий по диоксиду углерода состоит в том, чтобы деметанизатор работал с отпариванием диоксида углерода из нижнего жидкого продукта за счет добавления теплоты в колонну при использовании боковых кипятильников и/или нижнего кипятильника. На фиг. 2 показан такой вариант рабочей схемы для процесса по фиг. 1. В процессе по фиг. 2 используется такой же состав исходного газа и условия, приведенные для фиг. 1. Однако в модели процесса по фиг. 2 рабочие условия процесса изменяют для регулирования температуры нижней части отпарной колонны 19 так,чтобы содержание диоксида углерода в продуктовом этане соответствовало техническому условию. В модели этого процесса, как и в модели процесса по фиг. 1, рабочие условия подбирают так, чтобы сохранить извлечение этана на возможно высоком уровне без превышения мощности на сжатие остаточного газа. Поток 31 входящего газа охлаждается в теплообменнике 10 путем теплообмена с холодным остаточным газом при -96F (-71,11C) (поток 37 а), жидкостями кипятильника деметанизатора при 50F(10 С) (поток 42), жидкостями нижнего бокового кипятильника деметанизатора при 38F(3,33C) (поток 41) и жидкостями верхнего бокового кипятильника деметанизатора при -32F(-35,56C) (поток 40). Охлажденный поток 31 а поступает в сепаратор 11 при -72F (-57,78C) и давлении 600 фунт/кв.дюйм (4,2 МПа), где разделяется на пар (поток 32) и конденсированную жидкость (поток 35). 10 Пар (поток 32) из сепаратора 11 разделяется на два потока 33 и 34. Поток 33, содержащий 17% общего пара, объединяется с конденсированной жидкостью из сепаратора 11. Объединенный поток 36 проходит через теплообменник 12 в теплообмене с потоком 37 пара, отбираемого с верха деметанизатора, что приводит к охлаждению и существенной конденсации потока. Конденсированный в существенной степени поток 36 а при -132F (91,11C) затем мгновенно расширяется в расширительном клапане 13. Когда поток расширяется до рабочего давления абсорбционной колонны 17 (326 фунт/кв.дюйм 2,282 МПа), он охлаждается до температуры-152F (-102,22 С) (поток 36b). Расширенный поток 36b поступает в колонну в верхней точке подачи. Остальные 83% пара из сепаратора 11 (поток 34) поступают в расширительную машину 14, в которой из этой части высокого давления извлекается механическая энергия. В машине 14 пар расширяется, в основном, изоэнтропически (адиабатически) от давления 600 фунт/кв.дюйм (4,2 МПа) до рабочего давления 326 фунт/кв.дюйм (2,282 МПа) абсорбционной колонны 17 с охлаждением расширенного потока 34 а до температуры -118F(-83,33C). Расширенный и частично конденсированный поток 34 а поступает в дистилляционную колонну в нижней точке подачи. Жидкости (поток 38) из нижней части абсорбционной колонны 17 при -120F (-84,44 С) подаются насосом 18 в отпарную колонну 19 в верхней точке подачи (поток 38 а). Рабочее давление отпарной колонны 19 (336 фунт/кв.дюйм 2,352 МПа) несколько выше рабочего давления абсорбционной колонны. Перепад давления между этими двумя колоннами создает движущую силу, под действием которой пары (поток 39),отбираемые с верха отпарной колонны 19, при-118F (-83,33C) поступают в нижнюю точку подачи абсорбционной колонны 17. Жидкий продукт (поток 43) выходит из нижней части колонны 19 при 56F (13,33 С). В насосе 20 поток нагнетается до давления 550 фунт/кв.дюйм(38,5 МПа). Остаточный газ (поток 37) проходит противотоком исходному газу в а) теплообменник 12, где нагревается до -96F (-71,11 С) (поток 37 а), b) теплообменник 10, где нагревается до 70F ( 21,11 С) (поток 37b), и с) теплообменник 21, где нагревается до 101F (38,33C) (поток 37 с). Остаточный газ затем повторно сжимают в две стадии, компрессором 15, приводимым расширительной машиной 14, и компрессором 22,приводимым дополнительным источником мощности. После охлаждения потока 37 е до 115F (46,11C) (поток 37f) холодильником 23 и до 86F (30 С) теплообменником 21 остаточный продуктовый газ (поток 37g) поступает в раздаточный трубопровод при давлении 631 фунт/кв.дюйм Суммарные расходы потоков и потребление энергии для процесса по фиг. 2 приведены в следующей таблице. Таблица 2(фиг. 2) Суммарные расходы потока (фунтмоль/ч) Поток Метан Этан Пропан Бутаны+ 31 32 35 33 34 38 39 40 37 43(на основе округленных значений расходов) Этан 68,94% Пропан 96,61% Бутаны+ 99,25% Мощность (кВт) Сжатие остаточного газа 33302 Концентрация диоксида углерода в продуктовом этане для процесса по фиг. 2 составляет 5,95 мол.%, что согласуется с техническим условием владельца установки в 6,0 мол.% максимально. Отмечено, однако, что мольное отношение метан/этан в нижнем продукте 0,0008:1 (против допустимого отношения 0,0237:1) указывает на степень избыточного отпаривания, необходимого для регулирования содержания диоксида углерода в жидком продукте на нужном уровне. Сравнение уровней извлечения, приведенных в табл. 1 и 2, показывает, что осуществление процесса по фиг. 2 таким образом, чтобы уменьшить содержание диоксида углерода в продуктовом этане, приводит к значительному уменьшению извлечения жидкостей. В процессе по фиг. 2 извлечение этана снижается от 84,89 до 68,94%, извлечение пропана от 96,90 до 96,61% и бутанов+ от 99,33 до 99,25%. Существуют два фактора при проведении процесса по фиг. 2, которые приводят к меньшему извлечению жидкостей из нижней части отпарной колонны 19 сравнительно с процессом по фиг. 1. Первый, когда температура в нижней части отпарной колонны 19 повышается от 43F (6,11C) в процессе по фиг. 1 до 56F (13,33 С) в процессе по фиг. 2; температура в каждой точке колонны увеличивается относительно соответствующих значений температур процесса по фиг. 1. Это уменьшает количество охлаждения, которое потоки жидкостей колонны (потоки 40, 41 и 42) могут подать к входящему газу в теплообменнике 10. В результате, охлажденный поток исходного газа(поток 31 а) поступает в сепаратор 11 более теплым при температуре -72F (-57,78C) для процес 12 са по фиг. 2 против -82F (-63,33C) для процесса по фиг. 1, что, в свою очередь, приводит к уменьшению удерживания этана в абсорбционной колонне 17; что отражено содержанием этана в потоке 38 (3841 фунтмоль/ч для процесса по фиг. 2 против 4734 фунтмоль/ч для процесса по фиг. 1). Второй фактор состоит в том, что более высокие температуры в отпарной колонне 19 приводят к повышению температур в абсорбционной колонне 17, что выражается в меньшем количестве жидкого метана, поступающего в отпарную колонну 19(6842 фунтмоль/ч в потоке 38 для процесса по фиг. 2 против 11021 фунтмоль/ч для процесса по фиг. 1). Когда жидкий метан испаряется боковым кипятильником и главным кипятильником, прикрепленным к отпарной колонне 19, пары метана способствуют отпарке диоксида углерода из жидкостей, стекающих по колонне. При меньшем количестве доступного для отпаривания диоксида углерода метана в процессе по фиг. 2 большее количество этана в жидкостях должно испаряться,чтобы служить отпаривающим газом. Так как значения относительной летучести диоксида углерода и этана близки, пары этана являются гораздо менее эффективным отпаривающим агентом, чем пары метана, что уменьшает эффективность отпарки в колонне. Описание примеров осуществления изобретения Пример 1. На фиг. 3 приведена схема потоков процесса в соответствии с настоящим изобретением. Состав исходного газа и условия, рассматриваемые в процессе по фиг. 3, такие же, как в процессе по фиг. 1. Следовательно, процесс по фиг. 3 можно сравнивать с результатами процесса по фиг. 1 для иллюстрирования преимуществ настоящего изобретения. В модели процесса по фиг. 3 входящий газ поступает при 86F (30C) и давлении 613 фунт/ кв.дюйм (4,42 МПа) как поток 31. Поток 31 входящего газа охлаждается в теплообменнике 10 путем теплообмена с холодным остаточным газом при -99F (-72,77C) (поток 37 а), жидкостями кипятильника деметанизатора при 30F(-1,11 С) (поток 42), жидкостями бокового кипятильника деметанизатора при -4F (-20C)(поток 41) и частью жидкостей из нижней части абсорбционной колонны при -128F (-88,89 С)(поток 45). Охлажденный поток 31 а поступает в сепаратор 11 при -84F (-64,44 С) и давлении 603 фунт/кв.дюйм (4,221 МПа) и разделяется на поток 32 пара и поток 35 конденсированной жидкости. Пар (поток 32) из сепаратора 11 разделяется на первый газообразный и второй газообразный потоки, 33 и 34. Поток 33, содержащий 19% общего пара, объединяется с конденсированной жидкостью (поток 35) с образованием потока 36. Объединенный поток 36 проходит через теплообменник 12 в теплообмене с холодным ос 13 таточным газом (поток 37) и охлаждается до-138F (-94,44 С). Конденсированный поток 36 а затем мгновенно расширяется в соответствующем устройстве для расширения, таком как расширительный клапан 13, до рабочего давления(приблизительно 332 фунт/кв.дюйм - 2,324 МПа) абсорбционной колонны 17. Во время расширения часть потока испаряется, что приводит к охлаждению общего потока. В процессе по фиг. 3 расширенный поток 36b, выходящий из расширительного клапана 13, достигает температуры-151F (-101,66C) и поступает в абсорбционную колонну 17 в верхней точке подачи. Паровая часть (если присутствует) потока 36b объединяется с парами, поднимающимися из верхней фракционирующей ступени колонны, с образованием потока 37 после дистилляции, который выводится из верхней зоны колонны. Возвращаясь ко второму газообразному потоку 34, остальные 81% пара из сепаратора поступают в расширительную машину 14, в которой из этой части высокого давления извлекается механическая энергия. В машине 14 пар расширяется, в основном, изоэнтропически(2,324 МПа) с охлаждением расширенного потока 34 а до температуры -127F (-88,34C). Расширенный и частично конденсированный поток 34 а затем поступает в абсорбционную колонну 17 в нижней точке подачи. В варианте, как показано пунктирной линией, конденсированная жидкость (поток 35) из сепаратора 11 может быть мгновенно расширена в подходящем устройстве, таком как расширительный клапан 16, до рабочего давления абсорбционной колонны 17 с охлаждением потока 35 и образованием потока 35 а. Расширенный поток 35 а, выходящий из расширительного клапана 16, может затем поступать в абсорбционную колонну 17 в нижней точке подачи или в отпарную колонну 19 в верхней точке подачи. Жидкости (поток 38) из нижней части абсорбционной колонны 17 поступают в насос 18 при -128F (-88,89C), нагнетаются до более высокого давления (поток 38 а) и разделяются на две части. Одна часть (поток 44), содержащая 55% общей жидкости, поступает в отпарную колонну 19 в верхней точке подачи. Рабочее давление отпарной колонны 19 (342 фунт/кв.дюйм 2,394 МПа) несколько выше рабочего давления абсорбционной колонны 17, так что перепад давления между двумя колоннами создает движущую силу, под действием которой пары (поток 39) при -123F (-86,12C), отбираемые с верха отпарной колонны 19, поступают в абсорбционную колонну 17 в нижней точке подачи. Другая часть (поток 45), содержащая остальные 45% перекаченного насосом 18 до более высокого давления жидкого потока 38 а, поступает в теплообменник 10, в котором охлаж 003854 14 дает часть входящего газа, нагревается до -20F(-6,67C) и частично испаряется. Нагретый поток 45 а затем поступает в отпарную колонну 19 в средней точке подачи, отделенной от верхней точки подачи, где поток 44 поступает в колонну,по меньшей мере, одной теоретической тарелкой. В этом случае частично испаренный поток течет в ту же точку колонны, которая была использована для возврата потока верхнего бокового кипятильника (теоретическая тарелка 8 в отпарной колонне 19) в процессе по фиг. 1 и которая эквивалентна семи теоретическим тарелкам ниже точки отбора жидкого потока во фракционирующей системе (верхняя точка, где поток 44 входит в отпарную колонну 19). Жидкий продукт (поток 43) выходит из нижней части колонны 19 при 42F (5,56 С). В насосе 20 поток нагнетается до давления 550 фунт/ кв.дюйм (3,85 МПа). Остаточный газ (поток 37) проходит противотоком входящему исходному газу в а) теплообменник 12, где нагревается до-99F (-72,77 С) (поток 37 а), b) теплообменник 10, где нагревается до 80F (26,67C) (поток 37b), и с) теплообменник 21, где нагревается до 105F (40,56C) (поток 37 с). Остаточный газ затем повторно сжимается в две стадии, компрессором 15, приводимым расширительной машиной 14, и компрессором 22, приводимым дополнительным источником мощности. После охлаждения потока 37 е до 115F (46,11C) (поток 37f) холодильником 23 и до 86F (30 С) теплообменником 21 остаточный продуктовый газ(поток 37g) поступает в раздаточный трубопровод при давлении 631 фунт/кв.дюйм (4,417 МПа). Суммарные расходы потоков и потребление энергии для процесса по фиг. 3 приведены в следующей таблице. Таблица 3(фиг. 3) Суммарные расходы потоков (фунтмоль/ч) Поток Метан Этан Пропан Бутаны+ 31 32 35 33 34 38 44 45 39 37 43(на основе округленных значений расходов) Этан 86,12% Пропан 97,10% Бутаны+ 99,41% Мощность (кВт) Сжатие остаточного газа 33132 15 Сравнение табл. 1 и 3 показывает, что (при сравнении с уровнем техники) настоящее изобретение улучшает извлечение этана от 84,89 до 86,12%, извлечение пропана от 96,90 до 97,10%,извлечение бутанов+ от 99,33 до 99,41%. Сравнение табл. 1 и 3 дополнительно показывает,что улучшение выходов было достигнуто с использованием эквивалентной мощности. Благодаря использованию модифицированного кипятильника жидкость, поступающая из колонны в теплообменник 10 (поток 45), холоднее соответствующего потока 40 процесса по фиг. 1. Это увеличивает охлаждение, пригодное для входящего газа, что позволяет не только значительно увеличить производительность жидкостей в этой схеме, но жидкости пригодны при более низких температурах, чем это могло быть со схемой обычного кипятильника. В результате, увеличивается извлечение С 2+компонента и высших углеводородов в процессе по фиг. 3 при использовании такого же количества мощности на сжатие остаточного газа, как и в прототипе процесса по фиг. 1. Пример 2. В тех случаях, когда содержание диоксида углерода в жидком продукте является предметом обсуждения (из-за более жестких требований к характеристикам продукта, предъявляемых заказчиком, как в процессе по фиг. 2, например), настоящее изобретение представляет значительные преимущества в извлечении и эффективности по сравнению с известным из уровня техники процессом по фиг. 2. Рабочие условия процесса по фиг. 3 могут быть изменены, чтобы уменьшить содержание диоксида углерода в жидком продукте настоящего изобретения, как показано на фиг. 4. Состав исходного газа и условия, рассматриваемые в процессе по фиг. 4, такие же, как и в процессах по фиг. 1 и 2. Таким образом, процесс по фиг. 4 можно сравнивать с процессами по фиг. 1 и 2, чтобы проиллюстрировать преимущества настоящего изобретения. В модели процесса по фиг. 4 схема охлаждения входящего газа и разделения, по существу, такая же, как была использована в процессе по фиг. 3. Основное отличие состоит в том, что система управления установкой отрегулирована, чтобы увеличить пропорцию жидкостей из нижней части абсорбционной колонны 17 (поток 45), которые нагреваются в теплообменнике 10 и поступают в отпарную колонну 19 в средней точке подачи. Система управления установкой также отрегулирована, чтобы незначительно повысить температуру нижней части отпарной колонны 19, от 42F (5,56C) в процессе по фиг. 3 до 45F (7,22C) в процессе по фиг. 4, для сохранения мольного отношения метан/этан на заданном значении 0,0237:1 в нижнем продукте. Повышенное количество нагретого потока 45 а, поступающего в отпарную колонну 19, и более высокие температуры ниж 003854 16 ней части колонны увеличивают отпарку в колонне, что приводит к более высоким температурам для процесса по фиг. 4 относительно процесса по фиг. 3, как в абсорбционной колонне 17, так и в отпарной колонне 19, с результирующим эффектом снижения содержания диоксида углерода в потоке 43 жидкого продукта,выходящего из отпарной колонны 19. Более высокие температуры в колоннах также приводят к незначительному уменьшению низкотемпературного охлаждения, которое имеется в наличии в потоках процесса для подачи к входящим потокам колонны. В частности, это требует незначительного снижения части газа (поток 32) из сепаратора, которая поступает в теплообменник 12 в виде потока 33, тем самым снижается количество потока 36b, поступающего в верхнюю точку подачи абсорбционной колонны 17. Суммарные расходы потоков и потребление энергии для процесса по фиг. 4 приведены в следующей таблице. Таблица 4(фиг. 4) Суммарные расходы потоков (фунтмоль/ч) Поток Метан Этан Пропан Бутаны+ 31 32 35 33 34 38 44 45 39 37 43(на основе округленных значений расходов) Этан 84,61% Пропан 96,96% Бутаны+ 99,39% Мощность (кВт) Сжатие остаточного газа 33251 Концентрация диоксида углерода в продуктовом этане процесса по фиг. 4 составляет 5,80 мол.%, значительно ниже требований,предъявляемых заказчиком. Сравнение уровней извлечения, приведенных в табл. 1 и 4, показывает, что настоящее изобретение позволяет достичь требуемого содержания диоксида углерода при сохранении почти такой же эффективности извлечения жидкостей, как в процессе по фиг. 1. Хотя извлечение этана незначительно уменьшается от 84,89 до 84,61%, извлечение пропана и бутанов+ несколько увеличивается от 96,90 до 96,96% и от 99,33 до 99,39% соответственно. Сравнение табл. 1 и 4 дальше показывает, что сохранение выходов продукта было достигнуто при использовании, по существу, такой же мощности. 17 Сравнение уровней извлечения, показанных в табл. 2 и 4, показывает, что настоящее изобретение обеспечивает гораздо более высокую эффективность извлечения жидкостей, чем в процессе по фиг. 2, когда работает в режиме ограничения содержания диоксида углерода в жидком продукте. Сравнивая процесс по фиг. 2 с процессом по фиг. 4, можно увидеть, что извлечение этана повышается от 68,94 до 84,61%, т.е. почти на 15,7% больше. Извлечение пропана и бутанов+ также несколько увеличивается от 96,61 до 96,96% и от 99,25 до 99,39% соответственно. Дальнейшее сравнение табл. 2 и 4 показывает, что более высокий выход продукта не просто результат увеличения потребности мощности. Напротив, когда настоящее изобретение применяют, как в примере 2,не только увеличивается извлечение этана, пропана и бутанов+ по сравнению с известным из уровня техники процессом, но и увеличивается эффективность извлечения жидкости на 23% (на основе этана, извлеченного на единицу затраченной мощности). Как и в случае процесса по фиг. 3, преимущество, достигаемое осуществлением процесса по фиг. 4, состоит в том, что модифицированная схема кипятильника обеспечивает более холодные жидкости колонны, применяемые для охлаждения входящих потоков. Это увеличивает охлаждение, пригодное для входящего газа,что позволяет не только значительно увеличить производительность жидкостей в этом случае,но и жидкости пригодны при более низких температурах. В то же самое время больше метана поступает ниже в отпарную колонну, чем могло бы быть в ином случае, чтобы удовлетворить требования по диоксиду углерода. Замечено, что поток 45 в процессе фиг. 4 содержит 5721 фунтмоль/ч метана и поступает на теоретическую тарелку 8 отпарной колонны 19, в то время как поток 40 в процессе по фиг. 2 содержит только 1886 фунтмоль/ч и поступает в верхнюю часть отпарной колонны 19. Дополнительное количество метана, создаваемое настоящим изобретением в процессе фиг. 4, помогает отпарить диоксид углерода из жидкостей, стекающих по отпарной колонне. Количество диоксида углерода в NGL (продукте сжижения природного газа) можно изменять, регулируя количество жидкости, отбираемой для подачи в модифицированную схему кипятильника, вместо подачи в верхнюю часть отпарной колонны. Другие примеры осуществления изобретения На фиг. 5 показана схема потоков, иллюстрирующая, как процесс и устройство, приведенные в патенте США 5568737, можно приспособить для установки обработки природного газа в соответствии с настоящим изобретением. На фиг. 6, 7, 8 и 9 схемы показывают некоторые варианты способов осуществления модифицированной схемы кипятильника. На фиг. 6 показано типичное использование термосифона, в 18 котором частичный поток жидкости из фракционирующей колонны 50 в кипятильник 57 можно регулировать клапаном 58 в линии 61 отбора жидкости. Часть жидкости, не отбираемая из колонны, просто переливается через тарелку 51 стаканного типа и через распределитель 52 поступает на насадку (или тарелки) 53 ниже. Нагретый поток в линии 61 а из кипятильника 57 возвращается во фракционирующую колонну 50 в нижней точке, которая имеет подходящий распределительный механизм, такой как тарелка 54 стаканного типа и распределитель 55, для смешивания нагретого потока со стекающей по колонне жидкостью из насадки 53 и подачи смеси к насадке (или тарелкам) 56. На фиг. 7 и 8 показано типичное применение с нагнетанием, в котором вся стекающая жидкость отбирается в линию 61 и нагнетается до более высокого давления насосом 60. Поток жидкости под более высоким давлением в линии 61 а затем разделяется в подходящих распределительных клапанах 58 и 59 для получения нужного количества жидкости в линии 62,поступающей в кипятильник 57. Нагретый поток по линии 62 а, отходящей из кипятильника,возвращаетсяво фракционирующую колонну 50 в нижней точке, как было приведено раньше для фиг. 6. На фиг. 7 жидкость, которая не поступает в кипятильник, по линии 63 возвращается на тарелку 51 стаканного типа, с которой жидкость первоначально отбиралась, переливается через тарелку 51 на распределитель и поступает на насадку (или тарелки) 53 ниже. На фиг. 8 жидкость, которая не поступает в кипятильник, по линии 63 возвращается в колонну ниже тарелки 51 стаканного типа, с которой жидкость первоначально отбиралась, и поступает непосредственно в распределитель 52, который подает жидкость на насадку (или тарелки) 53 ниже. На фиг. 9 показано, как систему нагнетания, показанную на фиг. 8, можно применить в разделенной колонне (верхняя колонна 65 и нижняя колонна 50), такой же, как в фиг. 3 и 4. Специалистам, работающим в этой области техники, понятно, что преимущества настоящего изобретения создаются более холодным потоком к боковому кипятильнику и/или кипятильникам, что позволяет дополнительно охлаждать входящие в колонну потоки. Дополнительное охлаждение уменьшает потребность в мощности, необходимой для данного уровня извлечения продукта, и/или улучшает уровни извлечения продукта для данной мощности. Кроме того, специалистам, работающим в этой области техники, понятно, что преимущество настоящего изобретения состоит также в большем количестве метана, вводимого ниже в деметанизатор, чтобы способствовать отпарке диоксида углерода из стекающей по колонне жидкости. Чем больше метана имеется для отпарки диоксида углерода, тем, следовательно, меньше для этого требуется этана, что увеличивает ко 19 личество этана в нижнем жидком продукте. Вследствие этого, настоящее изобретение применимо для любого процесса, находящегося в зависимости от охлаждения любого числа входящих потоков и подачи полученных входящих потоков в колонну для дистилляции. В соответствии с изобретением охлаждение входящих потоков деметанизатора можно осуществлять несколькими способами. В процессах по фиг. 3 и 4 входящий поток 36 охлаждается и в существенной степени конденсируется потоком 37 пара, отбираемого с верха деметанизатора, в то время как жидкости деметанизатора (потоки 45, 41 и 42) используются только для охлаждения газового потока. В процессе по фиг. 5 входящий поток 48 остаточного газа высокого давления также охлаждается и в существенной степени конденсируется частями потока(потоки 46 и 37) пара, отбираемого с верха дистилляционной колонны, в то время как жидкости (потоки 40 и 42) деметанизатора используются только для охлаждения газового потока. Однако жидкости деметанизатора можно использовать, чтобы осуществить частичное или полное охлаждение и конденсацию потока 36 в процессах фиг. 3-5 и/или потока 48 в процессе по фиг. 5, дополнительно или вместо охлаждения газового потока. Далее, может быть использован любой поток при температуре более низкой, чем температура охлаждения входящего потока. Например, боковой отбор пара из деметанизатора может быть использован для охлаждения. Другие потенциальные источники охлаждения включают в себя (но не ограничены ими) жидкости высокого давления из сепаратора, мгновенно расширенные, и механические системы низкотемпературного охлаждения. Выбор источника охлаждения будет зависеть от ряда факторов (но не ограничен ими), в том числе от состава и состояния входящего газа,размера установки, размера теплообменника,температуры потенциального источника охлаждения и т. д. Специалистам, работающим в этой области техники, также понятно, что любые комбинации источников охлаждения или способов охлаждения можно применять в комбинации для достижения нужной температуры входящих потоков. В соответствии с изобретением можно использовать внешнее низкотемпературное охлаждение для добавления охлаждения к тому, что уже доступно для входящего газа от других потоков процесса, в частности, в случае более насыщенного компонентами входящего газа, чем в примерах 1 и 2. Использование и распределение жидкостей деметанизатора для теплообмена и специфическое устройство теплообменников для охлаждения входящего газа должно быть оценено для каждого отдельного случая, так же как и выбор потоков процесса для использования в теплообмене. 20 Жидкость высокого давления на фиг. 3-5(поток 35) нет нужды полностью объединять с частью пара из сепаратора (поток 33), поступающей в теплообменник 12. В варианте поток жидкости (или часть его) может быть расширен в подходящем устройстве расширения, таком как расширительный клапан 16, и подан в точку ниже середины дистилляционной колонны (абсорбционная колонна 17 или отпарная колонна 19 на фиг. 3 и 4 , фракционирующая колонна 17 на фиг. 5). Поток жидкости можно также использовать для охлаждения входящего газа или другого теплообмена до или после расширения,но перед поступлением в деметанизатор. Понятно, что относительное количество подачи в каждой ветви входящих потоков колонны будет зависеть от нескольких факторов, в том числе от давления газа, состава входящего газа, количества теплоты, которое можно извлечь из подачи, и количества доступной мощности. Чем больше подача на верх колонны, тем больше увеличивается извлечение и уменьшается энергия, извлекаемая из расширительной машины, а это увеличивает потребности в мощности на повторное сжатие. Увеличение подачи ниже в колонну уменьшает потребление мощности, но также уменьшает извлечение продукта. Точки подачи в среднюю часть колонны по фиг. 3 и 4 предпочтительны для приведенных рабочих условий процесса. Однако относительное местоположение подачи в среднюю часть колонны может изменяться в зависимости от состава входящего газа или других факторов,таких как нужные уровни извлечения и количество жидкости, образующейся при охлаждении входящего газа. Кроме того, два или более входящих потоков или части их можно объединять в зависимости от относительных температур и количеств отдельных потоков с последующей подачей объединенного потока в среднюю точку колонны. Фиг. 3 и 4 представляют предпочтительное осуществление для показанных составов и давления. Хотя расширение отдельного потока осуществляется в частном устройстве для расширения, можно применять другие устройства. Например, при определенных условиях можно использовать энергию расширения в существенной степени конденсированной части входящего потока (36 а на фиг. 3-5) или в существенной степени конденсированного рециклового потока (48b на фиг. 5). На фиг. 3 и 4 показана фракционирующая колонна, сконструированная из двух секций 17 и 19 из-за размеров установки. Решение, использовать ли фракционирующую колонну в форме одного реактора (17 на фиг. 5) или в виде нескольких реакторов, зависит от ряда факторов, таких как размер установки, расстояние до производственного оборудования и т. д. Выше настоящее изобретение описано на предпочтительных примерах осуществления, 21 однако, могут быть внесены изменения и дополнения, касающиеся условий, типов сырья или других требований, которые очевидны специалистам в данной области техники, не выходящие за пределы существа изобретения, определенные следующей ниже формулой изобретения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ разделения газового потока,включающего в себя метан, C2-компоненты, С 3 компоненты и компоненты высших углеводородов, на летучую фракцию остаточного газа,включающую в себя большую часть указанного метана, и фракцию относительно меньшей летучести, включающую в себя большую часть указанных С 2-компонентов, С 3-компонентов и компонентов высших углеводородов, в которомa) указанный газовый поток обрабатывают на одной или нескольких стадиях теплообмена и, по меньшей мере, на одной стадии разделения, для получения, по меньшей мере, первого входящего потока, охлаждаемого под давлением для конденсации, по существу, всего потока, и,по меньшей мере, второго входящего потока,охлаждаемого под давлением,b) указанный, по существу, конденсированный первый входящий поток расширяют до более низкого давления, в силу чего он дополнительно охлаждается, и затем подают во фракционирующую колонну в верхней точке подачи,c) указанный охлажденный второй входящий поток расширяют до указанного более низкого давления и затем подают во фракционирующую колонну в средней точке подачи, иd) указанные охлажденный расширенный первый и расширенный второй потоки подвергают фракционированию при указанном более низком давлении с извлечением компонентов указанной фракции относительно меньшей летучести,при этом 1) дистиллят выводят из указанной фракционирующей колонны и нагревают,2) нагретый дистиллят возвращают в более низкую точку фракционирующей колонны, отделенную от точки вывода, по меньшей мере,одной теоретической тарелкой, причем 3) количества и температуры указанных входящих потоков в указанную фракционирующую колонну достаточны для поддержания верхней части фракционирующей колонны при температуре,обеспечивающей извлечение большей части компонентов указанной фракции относительно меньшей летучести. 2. Способ разделения газового потока,включающего в себя метан, С 2-компоненты, С 3 компоненты и компоненты высших углеводородов, на летучую фракцию остаточного газа,включающую в себя большую часть указанного метана, и фракцию относительно меньшей лету 003854 22 чести, включающую в себя большую часть указанных С 2-компонентов, С 3-компонентов и компонентов высших углеводородов, в которомa) выведенную из фракционирующей колонны летучую фракцию остаточного газа сжимают и часть выводят для формирования сжатого первого потока,b) указанный сжатый первый поток охлаждают под давлением для конденсации, по существу, всего потока,c) указанный, по существу, конденсированный первый поток расширяют до более низкого давления, в силу чего он дополнительно охлаждается, и затем подают во фракционирующую колонну в верхней точке подачи,d) указанный газовый поток обрабатывают на одной или нескольких стадиях теплообмена с образованием, по меньшей мере, второго потока, который охлаждают под давлением,e) указанный охлажденный второй поток расширяют до указанного более низкого давления и затем подают в фракционирующую колонну в средней точке подачи, иf) указанные охлажденный расширенный первый и второй расширенный потоки подвергают фракционированию при указанном более низком давлении с извлечением компонентов указанной фракции относительно меньшей летучести, при этом 1) дистиллят выводят из указанной фракционирующей колонны и нагревают, и 2) нагретый дистиллят возвращают в более низкую точку фракционирующей колонны, отделенную от точки вывода, по меньшей мере,одной теоретической тарелкой, причем 3) количества и температуры указанных потоков, входящих в фракционирующую колонну, достаточны для поддержания верхней части фракционирующей колонны при температуре, обеспечивающей извлечение большей части компонентов указанной фракции относительно меньшей летучести. 3. Способ по п.1 или 2, отличающийся тем,что указанный дистиллят перекачивают после выведения из указанной фракционирующей колонны. 4. Способ по п.3, отличающийся тем, чтоa) указанный перекаченный дистиллят разделяют, по меньшей мере, на первую и вторую части,b) указанную первую часть нагревают, иc) нагретую первую часть возвращают в более низкую точку фракционирующей колонны, отделенную от точки вывода, по меньшей мере, одной теоретической тарелкой. 5. Способ по п.1 или 2, отличающийся тем,что указанный дистиллят нагревают путем теплообмена, по меньшей мере, с частью указанного газового потока или указанных входящих потоков для их охлаждения. 6. Способ по п.3, отличающийся тем, что указанный перекаченный дистиллят нагревают 23 путем теплообмена, по меньшей мере, с частью указанного газового потока или указанных входящих потоков для их охлаждения. 7. Способ по п.4, отличающийся тем, что указанную первую часть нагревают путем теплообмена, по меньшей мере, с частью указанного газового потока или указанных входящих потоков для их охлаждения. 8. Способ по п.1 или 2, отличающийся тем,что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести. 9. Способ по п.3, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести. 10. Способ по п.4, отличающийся тем, что количество и температура указанной нагретой первой части и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечи Фиг. 1 24 вающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести. 11. Способ по п.5, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести. 12. Способ по п.6, отличающийся тем, что количество и температура указанного нагретого дистиллята и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести. 13. Способ по п.7, отличающийся тем, что количество и температура указанной нагретой первой части и нагревание, подводимое к указанной фракционирующей колонне, достаточны для поддержания нижней части фракционирующей колонны при температуре, обеспечивающей уменьшение количества диоксида углерода в указанной фракции относительно меньшей летучести.
МПК / Метки
МПК: F25J 3/02
Метки: варианты, разделения, газового, потока, способ
Код ссылки
<a href="https://eas.patents.su/14-3854-sposob-razdeleniya-gazovogo-potoka-varianty.html" rel="bookmark" title="База патентов Евразийского Союза">Способ разделения газового потока (варианты)</a>
Предыдущий патент: Способ разупрочнения материалов кристаллической структуры и устройство для его осуществления
Следующий патент: Измерение магнитных полей с использованием струны, закрепленной на обоих концах
Случайный патент: Установка для сжижения природного газа