Способ гидравлического разрыва

Номер патента: 6567

Опубликовано: 24.02.2006

Авторы: Балкришна Гадияр, Моралес Хьюго

Скачать PDF файл.

Формула / Реферат

1. Способ разработки гидравлического разрыва подземного продуктивного пласта, включающий следующие операции:

определение количественных параметров продуктивного пласта, включая температуру на забое скважины и проницаемость формации;

оценка изменения во времени температуры формации, обусловленного проведенной до операции гидравлического разрыва закачкой калибровочной текучей среды, кислоты их смесей;

разработка обрабатывающей текучей среды, оптимизированной для упомянутой временной температуры.

2. Способ по п.1, в котором изменением температуры во времени является понижение температуры.

3. Способ по любому из предыдущих пунктов, в котором выполняют оценку эффективности обрабатывающей текучей среды.

4. Способ по п.3, в котором эффективность обрабатывающей текучей среды оценивают по времени закрытия разрыва и давления закрытия разрыва.

5. Способ по п.4, в котором давление закрытия разрыва определяют с помощью испытания на равновесие.

6. Способ по любому из предыдущих пунктов, в котором дополнительно производят оценку скорости сдвига обрабатывающей текучей среды, как функцию времени в ходе осуществления обработки.

7. Способ по п.6, в котором обрабатывающую текучую среду разрабатывают на основе вероятной вязкости при временной температуре формации и на основе вероятной скорости сдвига.

8. Способ по любому из предыдущих пунктов, который дополнительно включает оценку модуля Юнга формации.

9. Способ по любому из предыдущих пунктов, в котором обрабатывающую текучую среду разрабатывают таким образом, чтобы она была устойчивой в течение свыше 30% совокупного времени закачки.

10. Способ по любому из предыдущих пунктов, в котором обрабатывающую текучую среду разрабатывают таким образом, чтобы она обеспечивала концевое огораживание при гидравлическом разрыве пласта.

11. Способ по любому из предыдущих пунктов, в котором обрабатывающую текучую среду разрабатывают таким образом, чтобы ее эффективность составляла менее 20% для регулировки высоты гидравлического разрыва, ограниченного водой или газовой шапкой.

12. Способ разработки гидравлического разрыва подземного продуктивного пласта, включающий следующие операции:

определение количественных параметров продуктивного пласта, включая температуру на забое скважины и проницаемость формации, после проведенной до операции гидравлического разрыва закачкой калибровочной текучей среды, кислоты или любых их смесей;

оценка скорости сдвига обрабатывающей текучей среды, как функции времени в ходе обработки;

разработка обрабатывающей текучей среды и определение графика ее закачки, оптимизированного для упомянутой скорости сдвига.

13. Способ гидравлического разрыва подземной формации, содержащий разработку обрабатывающей текучей среды согласно любому из пп.1-12, которая является текучей средой для гидравлического разрыва, и закачку текучей среды для гидравлического разрыва в подземную формацию.

14. Способ выполнения гидравлического разрыва подземной формации, имеющей проницаемость свыше 10 мд, содержащий следующие операции:

оценка изменения во времени температуры данной формации, обусловленного проведенной до операции гидравлического разрыва закачкой калибровочной текучей среды, кислоты или любых их смесей;

разработка текучей среды для гидравлического разрыва, оптимизированной для упомянутой временной температуры;

закачка в подземную формацию текучей среды для гидравлического разрыва, содержащей основную текучую среду и гелеобразующее вещество, которое присутствует в текучей среде для гидравлического разрыва в соотношении от около 10 до около 25 фунтов на тысячу галлонов основной текучей среды.

15. Способ по п.14, в котором гелеобразующее вещество является сшитым гуаром.

Рисунок 1

 

Текст

Смотреть все

006567 Область техники Настоящее изобретение в общем относится к гидравлическому разрыву подземных геологических формаций, и в частности к способу и средствам оптимизирования проводимости разрыва, в частности, в формациях с высокой проницаемостью. Предшествующий уровень техники Углеводороды (нефть, газ и пр.) получают из подземной геологической формации (например, из продуктивного пласта) при помощи бурения скважины, проходящей в формацию, содержащую углеводороды. Тем самым обеспечивается частичный путь движения углеводородов к поверхности. Для добычи углеводородов, идущих из формации к стволу скважины (и в конечном счете - к поверхности),необходимо наличие достаточно беспрепятственного пути их течения из формации к стволу скважины. Создание гидравлического разрыва является основным средством для повышения продуктивности скважины путем создания или продления каналов от ствола скважины к продуктивному пласту. Эта работа обычно выполняется по существу путем гидравлического закачивания текучей среды для гидроразрыва в ствол скважины, проходящий в подземную формацию, и путем воздействия на пласты формации текучей средой для гидроразрыва под давлением. Пласты или породу формации принудительно растрескивают или разрывают. В разрыв вводят расклинивающий наполнитель для предотвращения закрытия разрыва, и за счет этого улучшают течение добываемой текучей среды, т.е. нефти, газа или воды. Основной целью создания гидравлического разрыва, выполняемого в продуктивном пласте с низкой проницаемостью, обычно является создание длинных и узких разрывов. С другой стороны, имеющие высокую проницаемость продуктивные пласты обрабатывают обычно с целью создания широкого и короткого разрыва, с заполнением его расклинивающим наполнителем, чтобы препятствовать перемещению мелких частиц, часто присутствующих в плохо затвердевших формациях. Это действенно выполняется путем создания условий для концевого огораживания при гидравлическом разрыве, т.е. в определенном местоположении выполняется заполнение расклинивающим наполнителем, чтобы тем самым остановить распространение разрыва. Недостаток гидравлических разрывов в формациях с высокой проницаемостью заключается в том,что они часто приводят к созданию значительных поверхностных слоев. Поверхностным слоем является область формации, которая повреждена вступлением посторонних веществ, в основном - буровым раствором во время бурения и заканчивания, включая операции по гидравлическому разрыву пласта. В случае раствора на основе гуара посторонними веществами по существу являются полимеры или остатки гелевых осуществляющих разрыв веществ, добавки, разработанные для снижения вязкости геля в конце операций по гидравлическому разрыву по причине расщепления полимера на меньшие молекулы. Эти вещества создают тонкий барьер, называемый поверхностным слоем, между скважиной и продуктивным пластом. Этот барьер является причиной снижения давления вокруг ствола скважины, количественно выражаемого коэффициентом поверхностного слоя. Коэффициент верхнего слоя выражается в безразмерных единицах, причем положительное значение обозначает повреждение продуктивного пласта, и отрицательное значение обозначает его улучшение. Очевидно, что чем более высокой будет концентрация гелеобразующего вещества, тем выше будет риск повреждения и образования поверхностных слоев. В формации с высокой проницаемостью этот риск тем более повышается отрицательным воздействием на концентрации расклинивающего наполнителя, которые часто используются для получения более широких расклиненных разрывов. Образование значительных поверхностных слоев может также произойти по той причине, что выпадение песка при гидравлическом разрыве не удалось осуществить. В случае формации с низкой проницаемостью, после инициирования разрыва скорость сдвига становится устойчивой, с некоторой тенденцией уменьшения. Напротив, в формации с высокой проницаемостью скорость сдвига снижается резко. Снижение скорости сдвига благоприятствует применению более низких концентраций гуара, в основном по той причине, что вязкость неньютоновской сшитой текучей среды возрастает с понижением скорости сдвига. Разница между понижением температуры в продуктивном пласте и скоростью сдвига текучей среды приводит к необходимости обеспечения усовершенствованных способов выполнения гидравлического разрыва и расклинивания разрыва, особенно в формациях с высокой проницаемостью, что приведет к уменьшению верхнего слоя и к улучшению регулирования геометрии разрыва. Сущность изобретения Согласно первому аспекту настоящего изобретения создан способ разработки гидравлического разрыва подземного продуктивного пласта, согласно которому количественно определяют параметры продуктивного пласта, включая вероятную динамическую температуру на забое скважины, оценивают скорость сдвига обрабатывающей текучей среды и рассчитывают обрабатывающую текучую среду и график ее закачки, оптимизированный для упомянутых скорости сдвига и температуры. В большинстве случаев этот процесс будет повторяющимся, поскольку температурное изменение зависит, например, от скорости закачки и совокупного объема закачки. Учитывая, что подземные температуры обычно существенно выше температур на поверхности, эти операции в основном приводят к временному понижению температуры формации по причине закачки более холодных текучих сред, таких как очистная текучая среда, калибровочная текучая среда, текучая-1 006567 среда для гидроразрыва и заполнения. Это обстоятельство даже в большей степени относится к формациям с высокой проницаемостью, в которых высокая степень утечки способствует температурным изменениям в формации. Поскольку вязкость текучей среды возрастает с понижением температуры, поэтому охлаждение продуктивного пласта благоприятствует применению текучих сред с загрузкой гелем, меньшей, чем 400 ф/тг (фунтов гелеобразующего вещества на тысячу галлонов основной текучей среды), или с большей, в основном применяемой, исходя из практического опыта, взятого из обычной практики операций в формациях с низкой проницаемостью. Помимо уменьшения повреждения формации и ухудшения заполнения расклинивающим раствором применение сшитых текучих сред с низкими концентрациями гуара в формациях с высокой проницаемостью может регулировать увеличение высоты за счет увеличения поглощения текучей среды, происходящей над и под перфорированным интервалом. Это свойство целесообразно использовать в продуктивных пластах, граничащих с водой или газовой шапкой. Важный аспект настоящего изобретения заключается в том, что температура продуктивного пласта рассматривается не как статическое значение, а скорее как динамическое значение. Динамические температуры вблизи ствола скважины и в разрыве должны оцениваться с помощью программы моделирования температур, например, - с помощью программы моделирования, описываемой в SPE paper 8441, G.R.Wooley, "Computing Downhole Temperature in Petroleum and Geothermal Wells". Температура в разрыве оценивается способом, излагаемым в Society of Petroleum Engineers paper 3011. Обычно химические реакции, ожидаемые во время проведения операций, соответствуют температурам в определенное время их проведения. Например, если первоначальная температура на забое составляет 200F и по причине закачки текучей среды она снижается до 150F, то при этом текучая среда, которая подвергается деструкции при 150F, могла бы быть хорошим решением во время проведения операций, но текучая среда в действительности не подвергается воздействию температуры выше 150F в течение большей части времени. Этот метод менее дорогостоящий (текучие среды, рассчитанные для более высокой температуры, обычно более дорогостоящие) и менее надежный (текучая среда в конечном счете распадется, когда температура в скважине снова станет нормальной). Согласно еще одному, или альтернативному, аспекту настоящего изобретения, выполняют оценку скорости сдвига, которой содействует выпадение песка при гидравлическом разрыве, что, как упомянуто выше, останавливает или ограничивает распространение разрыва и поэтому снижает скорость сдвига. Изменение скорости сдвига предпочтительно оценивают с помощью моделирующей программы FracCADE гидравлического разрыва согласно R. Hugo Morales, SPE paper 15305, "Microcomputer Analysis ofHydraulic Behavior with a P3D Simulator". Согласно одному из аспектов настоящего изобретения график закачки определяют, исходя из эффективности текучей среды. Эффективность текучей среды определяется как соотношение между объемом создаваемого разрыва и объемом закачиваемых текучих сред для гидроразрыва. То есть, если эффективность текучей среды составляет 30%, то 70% закачиваемой текучей среды для разрыва фактически утекает в формацию. Помимо этого, эффективность текучей среды непосредственно соотносится со временем закрытия разрыва, т.е. после распространения разрыва при помощи закачки текучей среды разрыв закрывается по мере ее утечки. Чем дольше будет закрываться разрыв, тем более высокой будет эффективность текучей среды. Точка перегиба на графике зависимости давления от времени обозначает время закрытия и давление закрытия. Часто очень трудно выбрать время закрытия и давление закрытия, т.к. нередко другие характеристики (т.е. изменение режима потока или выброс газа) искажают действительную точку перегиба. Поэтому еще один аспект настоящего изобретения заключается в определении времени закрытия и давления закрытия с помощью модифицированного испытания на равновесие согласно описываемому ниже испытанию на равновесие. Модифицированный способ равновесия предусматривает закачку текучей среды нарастающими этапами: q1, q2, q3qn. Затем снижают скорость до скорости распространения и продолжают закачку,пока давление не станет устойчивым. После остановки насосов первым явлением снижения давления является давление закрытия, которое нагляднее иллюстрируется квадратным корнем графика временной зависимости. Преимущество модифицированного равновесия заключается в том, что скорость распространения оценивается в динамике по изменению наклона на графике зависимости q от давления. Испытание на равновесие описывается в патентной заявке США 10/178,492, поданной 24 июня 2002 г. и переуступленной для компании Schlumberger, и содержание которой включено в данный документ в качестве ссылки; и также в статье в Society of Petroleum Engineering SPE paper 78173, "EquilibriumTest - A Method for Closure Pressure Determination", подготовленной для презентации в г. Ирвинг, Техас 20-23 октября 2002 г. Испытание на равновесие предусматривает закачку текучей среды в формацию сначала с первой по существу постоянной скоростью Q, чтобы создать разрыв некоторого объема, затем темп закачки снижается до значительно меньшего темпа q, и при этом объем разрыва становится постоянным, т.е. закачка и утечка достигают равновесия. Когда объем разрыва становится постоянным при-2 006567 равновесии, скважину останавливают. Давление в стволе скважины постоянно контролируют, и давление закрытия определяют из анализа давления в стволе скважины по функции времени безразмерного времени tD остановки, предпочтительно на основе квадратного корня времени tD остановки. При выполнении испытания на равновесие небольшая скорость q должна быть меньше скорости утечки в растворе во время снижения скорости. Первоначальная постоянная скорость Q является предпочтительно предполагаемой скоростью разрыва во время полномасштабных операций. Отношение q/Q предпочтительно составляет менее 0,2. В результате снижения скорости закачки давление в стволе скважины сначала снижается, когда в формацию утекает количество текучей среды, большее, чем закачивается. Утечка текучей среды со временем уменьшается, и когда разрыв приближается к закрытию, закачка и утечка достигают равновесия. Когда объем разрыва становится постоянным при равновесии, давление выравнивается, и это можно легко определить. Давление закрытия можно определить по измеренному давлению при первоначальном понижении скорости и при равновесии. Падение давления при остановке отражает эффекты извилистости и трения, соответствующие небольшой скорости закачки. Поэтому оцениваемое давление закрытия можно скорректировать для учета извилистости и трения. Этот способ оперативно легко осуществить в производственных условиях. Несмотря на то, что настоящее изобретение особо целесообразно для расчета, планирования и выполнения гидравлического разрыва формаций с высокой проницаемостью, фактически одновременно с размещением гравийного фильтра, оно никоим образом не ограничивается именно этим его аспектом. В частности, настоящее изобретение позволяет улучшить регулирование геометрии разрыва и, поэтому,обеспечивать возможность гарантирования того, что он находится в узкой продуктивной зоне и не проходит в прилегающие участки за счет регулирования концевого огораживания при гидравлическом разрыве и высоты разрыва. В его самом общем аспекте настоящее изобретение рассматривает и текучую среду для гидроразрыва, и операции по гидравлическому разрыву как переменные величины, применяемые для расчета текучей среды и операций по гидравлическому разрыву. Краткое описание чертежей Упомянутые и прочие объекты, признаки и преимущества настоящего изобретения поясняются со ссылкой на приводимое ниже подробное описание и прилагаемые чертежи, на которых изображено следующее: фиг. 1 показывает типичный разрыв в боковой проекции (фиг. 1-А) и сечении (фиг. 1-В); фиг. 2 - изменение вязкости текучей среды в зависимости от температуры и загрузки полимера; фиг. 3 - температурный профиль на забое скважины в зависимости от времени во время калибровки операций по гидравлическому разрыву пласта; фиг. 4 - изменения нормализованной температуры по длине разрыва как функция эффективности текучей среды; фиг. 5 - распределение времени пребывания текучей среды на разных этапах операций по гидравлическому разрыву пласта; фиг. 6 - скорость сдвига разрыва (правая ось) и вязкость текучей среды (левая ось) в зависимости от времени закачки для разрыва пласта с низкой проницаемостью (фиг. 6-А) и разрыва пласта с высокой проницаемостью (фиг. 6-В); фиг. 7 - принцип оценки давления закрытия с помощью модифицированного способа равновесия; фиг. 8 показывает концентрацию расклинивающего наполнителя, создающуюся с помощью способа согласно настоящему изобретению для разрыва пласта с высокой проницаемостью; фиг. 9 - поверхностные слои в зависимости от проницаемости пласта по результатам 95 испытаний с помощью обычных операций и с помощью способа согласно настоящему изобретению. Подробное описание и предпочтительные варианты осуществления изобретения В большинстве случаев операции по гидравлическому разрыву пласта заключаются в закачке вязкой текучей среды без расклинивающего наполнителя, которую также называют набивкой и которая обычно представляет собой воду с некоторыми жидкими добавками высокой вязкости, в скважину в темпе более быстром, чем темп, с которым текучая среда может полностью утечь в пласт, в результате чего повышается давление и порода разрывается, создавая искусственный разрыв и/или увеличивая существующий разрыв. Затем такое расклинивающее вещество, как песок, вводят в текучую среду для формирования раствора, который закачивают в разрыв, чтобы не дать ему сомкнуться при снижении давления закачки. Способность основной текучей среды доставлять расклинивающий наполнитель зависит от типа вяжущих добавок, вводимых в водную основу. Водные текучие среды для гидроразрыва с водорастворимыми полимерами, вводимыми для получения раствора повышенной вязкости, широко используют в осуществлении гидравлических разрывов. С конца 1950-х гг. более половины операций по гидравлическому разрыву проводится с помощью жидкостей, содержащих гуаровую смолу, полисахариды с высоким молекулярным весом, состоящие из cахаров маннозы и галактозы, или из таких гуаровых производных как гидропропилхьюар, карбоксиметилгидропропилхьюар. Агенты сшивания на основе комплексов бората, титана, циркония или алюминия обычно-3 006567 используют для повышения эффективного молекулярного веса полимеров, чтобы те в большей степени соответствовали применению в скважинах с высокой температурой. В меньшей степени также используют такие производные целлюлозы, как гидроксиэтилцеллюлоза или гидроксиэтилцеллюлоза и карбоксиметилгидроксиэтилцеллюлоза, с агентами сшивания или без таковых. Два биополимера - ксантан и склероглюкан проявили хорошую способность создавать взвесь расклинивающего наполнителя, хотя они более дорогие, чем производные гуара, и поэтому используются реже. Полиакриламидные и полиакрилатные полимеры и сополимеры обычно используются для высокотемпературных применений. Материалом расклинивающего наполнителя может быть песок, керамические расклинивающие наполнители промежуточной прочности (выпускаемые компаниями Carbo Ceramics, Norton Proppants и др.), агломерированные бокситы и другие материалы, известные в данной отрасли. Любой из этих основных расклинивающих веществ может также иметь полимерное покрытие (выпускаемое компанией Santrol - филиалом компании Fairmount Industries, компанией Borden Chemical и др.), чтобы улучшить способность расклинивающего наполнителя к кластерообразованию. Если пласт имеет высокую проницаемость (свыше 10 мд), то главная цель гидравлического разрыва/заполнения заключается в обеспечении разрыва высокой проводимости и затрубного заполнения однократной операцией закачки. Фиг. 1 показывает зону гидроразрыва в подземной формации с высокой проницаемостью. Данную зону добычи пересекает ствол скважины или скважина в земле, в который вставлена труба 1, по которой углеводород течет из продуктивного пласта на поверхность. Разрыв 2 создан искусственно, и гравий вводят в ствол скважины в кольцевое пространство вокруг трубы (кольцевой заполнитель 3), и он проходит в разрыве 2. В случае формации с высокой проницаемостью обычно ставится цель обеспечить короткий (менее 50 футов) и широкий (1-2 дюйма шириной) разрыв, показываемый сечением по линии А-А на чертеже фиг. 1. Для этого очень важно осуществить выпадение песка,которое ограничит дальнейшее распространение разрыва и эффективное заполнение расклинивающим наполнителем в разрыве и затрубном пространстве вокруг ствола скважины. Заявители изучили температурную зависимость, поскольку вязкость неньютоновской текучей среды возрастает со снижением температуры, согласно фиг. 2, которая показывает влияние температуры на вязкость (сП или с-1 при сдвиге 40 с-1) шести водных текучих сред, соответственно содержащих 15 (пустых кругов), 20 (черных квадратов), 25 (пустых треугольников), 30 (черных кругов), 25 (пустых ромбов) и 40 фунтов (обозначены звездочками) гуара на тысячу галлонов основной текучей среды. Исходя из практических данных (показания манометров на забое), заявители обнаружили, что значительное понижение температуры в стволе скважины происходит по причине закачки предварительных текучих сред гидроразрыва/заполнения (кислотные и калибровочные текучие среды) согласно фиг. 3, которая показывает понижение температуры в связи с закачкой калибровочной текучей среды. Явления давления (давление на забое, правая Y-ось) показывают калибровочные операции и операции по гидроразрыву. Этот график, типичный для формаций с высокой проницаемостью, показывает, что статическая температура на забое (левая Y-ось) снизилась с 280 до 180F до закачки основной текучей среды для гидроразрыва/заполнения. Понижение температуры обусловлено закачкой кислоты или другими калибровочными операциями. Но при этом имеющиеся в настоящее время моделирующие программы температур (не показан) могут предсказывать температурный профиль достаточно точно. Необходимо отметить, что понижение температуры не ограничивается областью вблизи ствола скважины и может проходить во фланги разрыва. Известен способ решения задачи понижения температуры по длине разрыва, исходя при этом из единообразного темпа утечки согласно фиг. 4. Фиг. 4 показывает нормализованную температуру Td (Td=0 на входе в разрыв , Td=1 в конце разрыва) по длине разрыва (X/L=1 на конце разрыва) как функцию эффективности текучей среды (указано как процентное содержание на каждой кривой). Согласно фиг. 4 чем меньшей будет эффективность текучей среды, тем меньшим будет влияние температуры продуктивного пласта. В формациях с высокой проницаемостью обычные значения эффективности текучей среды в начале концевого огораживания при гидравлическом разрыве составляют менее 20%, причем в формации с низкой проницаемостью значения эффективности текучей среды превышают 40%.Фиг. 4 показывает, что текучая среда остается при температуре ствола скважины (эффект понижения температуры) внутри разрыва на большей части своей длины. Это обстоятельство благоприятствует расчету сшитой текучей среды для гидроразрыва, исходя из понижения температуры. Несмотря на то, что в формации с низкой проницаемостью ствол скважины охлаждается, температура текучей среды в разрыве быстро доходит до статической температуры продуктивного пласта. Поэтому фиг. 2 можно также использовать как критерий выбора текучей среды на основе температуры охлаждения, если предположить, что температура охлаждения составляет 150F (65,5C) и необходимая вязкость составляет 40 Ст-1, то загрузка гуара определяется при пересечении 150F и 300 сП, в данном случае соответствуя кривой с пустыми кругами, т.е. 15 фунтов на тысячу галлонов основного флюида. Геометрия разрыва и размещение расклинивающего наполнителя в значительной степени зависят от вязкости, и изучение характеристик вязкости текучей среды было сосредоточено на формациях как высокой проницаемости, так и низкой проницаемости. Вязкость текучей среды является функцией скорости сдвига и температуры. Вязкость неньютоновских текучих сред повышается с уменьшением скоро-4 006567 сти сдвига. В формациях с низкой проницаемостью желательны более длинные и узкие разрывы, что приводит к более длительным срокам закачки (более 1 ч). Поэтому текучая среда должна иметь высокую эффективность (более 45%), что будет означать более высокую вязкость для большей длительности. Но в формациях с высокой проницаемостью разрывы короткие и широкие, и поэтому сроки закачки короткие(в большинстве случаев менее 30 мин). Фиг. 5 моделирует время нахождения текучей среды внутри разрыва. Нужно отметить, что текучие среды, закачиваемые ранее и позднее, подвергаются воздействию на них в течение меньшего времени,чем текучие среды, закачиваемые на промежуточных этапах. Текучая среда ни на одном из этапов не присутствует долее 30% всего времени закачки. Поэтому текучая среда необязательно должна быть устойчивой дольше, чем часть (30%) времени закачки. Это означает, что можно использовать интенсивную программу разрыва наряду с низкими концентрациями гуара. Взаимосвязь между вязкостью и скоростью сдвига показана на фиг. 6 а (низкая проницаемость) и 6b(высокая проницаемость). В случае формации с низкой проницаемостью после инициирования разрыва скорость сдвига становится устойчивой, с тенденцией к некоторому снижению, следовательно, вязкость тоже стабильная, с тенденцией к некоторому повышению. Напротив, после концевого огораживания при гидравлическом разрыве пласта в формации с высокой проницаемостью скорость сдвига резко снижается(на порядок величины), и в результате этого вязкость также резко увеличивается. Увеличение вязкости позволяет использовать текучую среду с более низкой концентрацией геля (25 фунт/тысяча галлонов или менее). Способ равновесия (фиг. 7) используют для прогнозирования закрытия разрыва. Принцип способа равновесия заключается в том, что при уменьшении скорости распространения область разрыва замыкается, и в конечном счете остается небольшой разрыв (разрыв равновесия). Этот способ заключается в закачке с проверочной скоростью, чтобы определить скорость распространения в динамике, и после закачки при максимальной скорости скорость снижают до скорости распространения и продолжают закачку до достижения устойчивой характеристики давления. После остановки насосов первым явлением падения давления является давление закрытия (время закрытия). Способ согласно настоящему изобретению содержит следующие операции: определение температур охлаждения с помощью калиброванной моделирующей программы температур и/или данных манометров на забое от соседних формаций; определение времени, в течение которого текучая среда подвергается внешнему воздействию, которое учитывается в расчете регламента осуществляющих гидроразрыв веществ; определение вероятного профиля скорости сдвига; разработка текучей среды на основе температуры охлаждения и вероятной скорости сдвига; закачка кислоты отклоняющими ступенями (кислота предназначается для очистки перфораций и устранения фильтровального осадка, и для содействия охлаждению формации; закачка на проверочной скорости (модифицированный способ равновесия), чтобы оценочно определить давление закрытия; калибровочная закачка для определения эффективности текучей среды на основе значения давления закрытия,расчет графика закачки при помощи генератора графика закачки, который определяет график закачки из эффективности текучей среды или коэффициента текучей среды,закачка и осуществление концевого огораживания при гидравлическом разрыве. Изобретение обеспечивает возможность разработки текучих сред для гидроразрыва, имеющих пониженную концентрацию гуара, целесообразную для пластовых резервуаров с проницаемостью выше 10 мд, модулем Юнга менее 1,5 х 106 фунт/кв.дюйм и температурой охлаждения менее 300F. Поскольку этот способ обеспечивает возможность точного регулирования высоты и длины, то операции по гидроразрыву и заполнению можно выполнять вблизи контакта с водой или газовой шапкой. Это показано на фиг. 8, показывающей концентрацию расклинивающего наполнителя по длине разрыва. Фиг. 8 показывает, что высота регулируется ограничиванием перфорированного интервала, чтобы оставить участки утечки над и под перфорированным интервалом. Увеличение высоты регулируется за счет увеличения поглощения текучей среды над и под перфорированным интервалом (т.е. расклинивающий наполнитель дает отложения из-за обезвоживания и препятствует передаче давления). Помимо этого, применение сшитого геля с низким содержанием гуара снижает заполнение расклинивающим наполнителем и уменьшает повреждение скважины. Все это содействует уменьшению поверхностных слоев (повышению добычи). Это показано на фиг. 8. Этот чертеж показывает, что поверхностные слои согласно полученным данным для Мексиканского Залива увеличиваются на оси kh. Общее среднее значение составляет 10,14, в то время как поверхностные слои, получаемые при гидроразрыве/заполнении согласно излагаемому здесь способу имеют среднее значение 3,4.-5 006567 ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ разработки гидравлического разрыва подземного продуктивного пласта, включающий следующие операции: определение количественных параметров продуктивного пласта, включая температуру на забое скважины и проницаемость формации; оценка изменения во времени температуры формации, обусловленного проведенной до операции гидравлического разрыва закачкой калибровочной текучей среды, кислоты их смесей; разработка обрабатывающей текучей среды, оптимизированной для упомянутой временной температуры. 2. Способ по п.1, в котором изменением температуры во времени является понижение температуры. 3. Способ по любому из предыдущих пунктов, в котором выполняют оценку эффективности обрабатывающей текучей среды. 4. Способ по п.3, в котором эффективность обрабатывающей текучей среды оценивают по времени закрытия разрыва и давления закрытия разрыва. 5. Способ по п.4, в котором давление закрытия разрыва определяют с помощью испытания на равновесие. 6. Способ по любому из предыдущих пунктов, в котором дополнительно производят оценку скорости сдвига обрабатывающей текучей среды, как функцию времени в ходе осуществления обработки. 7. Способ по п.6, в котором обрабатывающую текучую среду разрабатывают на основе вероятной вязкости при временной температуре формации и на основе вероятной скорости сдвига. 8. Способ по любому из предыдущих пунктов, который дополнительно включает оценку модуля Юнга формации. 9. Способ по любому из предыдущих пунктов, в котором обрабатывающую текучую среду разрабатывают таким образом, чтобы она была устойчивой в течение свыше 30% совокупного времени закачки. 10. Способ по любому из предыдущих пунктов, в котором обрабатывающую текучую среду разрабатывают таким образом, чтобы она обеспечивала концевое огораживание при гидравлическом разрыве пласта. 11. Способ по любому из предыдущих пунктов, в котором обрабатывающую текучую среду разрабатывают таким образом, чтобы ее эффективность составляла менее 20% для регулировки высоты гидравлического разрыва, ограниченного водой или газовой шапкой. 12. Способ разработки гидравлического разрыва подземного продуктивного пласта, включающий следующие операции: определение количественных параметров продуктивного пласта, включая температуру на забое скважины и проницаемость формации, после проведенной до операции гидравлического разрыва закачкой калибровочной текучей среды, кислоты или любых их смесей; оценка скорости сдвига обрабатывающей текучей среды, как функции времени в ходе обработки; разработка обрабатывающей текучей среды и определение графика ее закачки, оптимизированного для упомянутой скорости сдвига. 13. Способ гидравлического разрыва подземной формации, содержащий разработку обрабатывающей текучей среды согласно любому из пп.1-12, которая является текучей средой для гидравлического разрыва, и закачку текучей среды для гидравлического разрыва в подземную формацию. 14. Способ выполнения гидравлического разрыва подземной формации, имеющей проницаемость свыше 10 мд, содержащий следующие операции: оценка изменения во времени температуры данной формации, обусловленного проведенной до операции гидравлического разрыва закачкой калибровочной текучей среды, кислоты или любых их смесей; разработка текучей среды для гидравлического разрыва, оптимизированной для упомянутой временной температуры; закачка в подземную формацию текучей среды для гидравлического разрыва, содержащей основную текучую среду и гелеобразующее вещество, которое присутствует в текучей среде для гидравлического разрыва в соотношении от около 10 до около 25 фунтов на тысячу галлонов основной текучей среды. 15. Способ по п.14, в котором гелеобразующее вещество является сшитым гуаром.

МПК / Метки

МПК: E21B 41/00, C09K 8/80, C09K 8/68, E21B 43/26

Метки: гидравлического, способ, разрыва

Код ссылки

<a href="https://eas.patents.su/10-6567-sposob-gidravlicheskogo-razryva.html" rel="bookmark" title="База патентов Евразийского Союза">Способ гидравлического разрыва</a>

Похожие патенты