Способ и устройство для акустической телеметрии в скважине
Формула / Реферат
1. Скважинная система связи для телеметрии через сжимаемую промывочную жидкость, содержащая
источник промывочной жидкости, выполненный с возможностью подачи промывочной жидкости под давлением по трубопроводу к буровому долоту;
впускное отверстие для газа, выполненное с возможностью подачи газа в промывочную жидкость, посредством которой уменьшается сжимаемость промывочной жидкости ниже по потоку от впускного отверстия;
генератор импульсов в стволе скважины, выполненный с возможностью создания импульсов давления в сжимаемой промывочной жидкости, соответствующих заранее заданной кодовой комбинации;
отражатель, расположенный ниже по потоку от впускного отверстия для газа, которому приданы нужные размеры, обеспечивающие создание в ответ на падающую продольную волну, прошедшую от генератора импульсов к поверхности, отраженной продольной волны, имеющей ту же самую полярность давления, что и падающая продольная волна; и
датчик давления, расположенный ниже по потоку от отражателя, выполненный с возможностью обнаружения давления в сжимаемой промывочной жидкости и формирования электрических сигналов, соответствующих обнаруженному давлению.
2. Система по п.1, в которой трубопровод включает в себя колонну бурильных труб и наземные трубопроводы, а впускное отверстие для газа расположено на одном из наземных трубопроводов.
3. Система по п.2, в которой генератор импульсов расположен в оборудовании нижней части скважины около бурового долота.
4. Система по п.1, дополнительно содержащая процессор, связанный с датчиком давления, выполненный с возможностью демодуляции электрических сигналов, формируемых датчиком давления.
5. Система по п.1, в которой энергия падающей продольной волны, поглощенной отражателем, составляет больше 20%.
6. Система по п.5, в которой энергия падающей продольной волны, поглощенной отражателем, составляет больше 30%.
7. Система по п.6, в которой энергия падающей продольной волны, поглощенной отражателем, составляет больше 40%.
8. Система по п.1, в которой отражатель имеет значение l1 больше чем 0,25.
9. Система по п.8, в которой отражатель имеет значение l1 больше чем 0,5.
10. Система по п.9, в которой отражатель имеет значение l1 больше чем 1.
11. Система по п.1, в которой отражатель выполнен в виде пластины с отверстием.
12. Система по п.1, в которой отражатель содержит регулируемую диафрагму.
13. Система по п.1, в которой промывочная жидкость является высокосжимаемой жидкостью.
14. Система по п.1, в которой датчик давления расположен в трубопроводе ниже по потоку от отражателя на расстоянии от отражателя, большем чем 12 диаметров трубопровода.
15. Система по п.14, в которой датчик давления расположен на расстоянии от отражателя, большем чем 60 диаметров трубопровода.
16. Система по п.1, дополнительно содержащая
источник газа, связанный посредством трубопровода с текучей средой,
первый и второй датчики давления, установленные по каждую сторону от отражателя, расположенного в газовом трубопроводе.
17. Способ обнаружения телеметрических сигналов, проходящих от скважинного источника к поверхности через сжимаемую промывочную жидкость, содержащий этапы, при которых осуществляют
отражение падающих продольных волн в сжимаемой промывочной жидкости, проходящих к поверхности, в результате которого образуются отраженные продольные волны, имеющие ту же самую полярность давления, что и падающие продольные волны; и
регистрацию давления сжимаемой промывочной жидкости в месте ниже по потоку от места, где образуются отраженные волны.
18. Способ по п.17, в котором давление регистрируют, используя датчик давления, дополнительно содержащий этап, при котором осуществляют демодуляцию электрических сигналов, формируемых датчиком давления, с использованием процессора в электрической связи с датчиком давления.
19. Способ по п.17, в котором энергия падающей продольной волны, поглощенной при отражении, составляет больше 20%.
20. Способ по п.19, в котором энергия падающей продольной волны, поглощенной при отражении, составляет больше 40%.
21. Способ по п.17, в котором отражатель имеет значение l1 больше чем 0,25.
22. Способ по п.21, в котором отражатель имеет значение l1 больше чем 1.
23. Способ по п.17, в котором для создания отраженных волн используют регулируемую диафрагму.
24. Способ по п.17, в котором давление регистрируют в месте трубопровода, находящемся ниже по потоку на расстоянии от отражателя, большем чем 12 диаметров трубопровода.
25. Способ по п.24, в котором давление обнаруживают в месте на расстоянии от отражателя, большем чем 60 диаметров трубопровода.
Текст
1 Область техники, к которой относится изобретение Настоящее изобретение относится к области телеметрии во время бурения скважины. В частности, изобретение относится к способу и устройству для повышения отношения сигнала к шуму в случае акустической телеметрии по гидроимпульсному каналу связи во время бурения при пониженном гидростатическом давлении в стволе скважины. Предпосылки создания изобретения Известно, что прием сигналов, проходящих через промывочную жидкость при акустической телеметрии, часто называемой телеметрией по гидроимпульсному каналу связи, существенно ухудшается, если промывочная жидкость внутри бурильной колонны содержит значительное количество газа. Газ часто нагнетают в промывочную жидкость во время бурения при пониженном гидростатическом давлении в стволе скважины (или во время бурения при малом напоре, когда скважина не находится при пониженном гидростатическом давлении, но давление в забое скважины снижают путем добавления газа). Хотя некоторые трудности при приеме сигнала неизбежны вследствие затухания акустического сигнала при его прохождении вверх по столбу бурового раствора, но прием к тому же затрудняется акустическими условиями в верхней части столба бурового раствора в наземной системе. Это особенно справедливо в случае, когда газ нагнетают в буровой раствор в наземной системе, в которой должны обнаруживаться импульсы давления. Вследствие затухания сигнала и неблагоприятных акустических условий в наземной системе телеметрический сигнал часто может искажаться уже в месте, где обычная телеметрия по гидроимпульсному каналу связи либо невозможна, либо практически нецелесообразна. В патентной заявке Великобритании GB 2333787 А раскрыта система для телеметрии по гидроимпульсному каналу связи во время бурения при пониженном гидростатическом давлении в стволе скважины, в которой использован измеритель потока жидкости. Сигнал измерителя потока преобразуется в сигнал давления посредством датчика перепада давления и после этого масштабируется и регистрируется как сигнал давления. Следовательно, в системе, раскрытой в заявке GB 2333787 А, вместо измерения давления, измеряется расход бурового раствора. Такие системы предрасположены к ухудшению отношения сигнала к шуму вследствие, например, шума, создаваемого буровыми насосами и системой введения газа. Краткое описание изобретения Поэтому задача настоящего изобретения заключается в создании системы и способа для акустической телеметрии с повышенным отношением сигнала к шуму по гидроимпульсному 2 каналу связи во время бурения при пониженном гидростатическом давлении в стволе скважины,в которых улучшены акустические условия в верхней части наземной системы. В соответствии с изобретением разработана скважинная система связи для телеметрии через сжимаемую промывочную жидкость. Система включает в себя источник промывочной жидкости, из которого промывочная жидкость подается под давлением по трубопроводу к буровому долоту, и впускное отверстие для газа для подачи газа в промывочную жидкость, посредством которой уменьшается сжимаемость промывочной жидкости ниже по потоку от впускного отверстия. Генератор импульсов в стволе скважины создает импульсы давления в сжимаемой промывочной жидкости, соответствующие заранее заданной кодовой комбинации. Отражатель расположен ниже по потоку от впускного отверстия для газа и создает в ответ на падающие продольные волны, прошедшие от генератора импульсов к поверхности, отраженные продольные волны, имеющие ту же самую полярность давления, что и падающие продольные волны. Датчик давления расположен ниже отражателя для обнаружения давления в сжимаемой промывочной жидкости и формирования электрических сигналов, соответствующих обнаруженному давлению. В соответствии с предпочтительным вариантом осуществления датчик давления установлен ниже по потоку от отражателя на расстоянии, равном по меньшей мере 12 диаметрам трубопровода. В соответствии с более предпочтительным вариантом осуществления датчик установлен ниже по потоку от отражателя на расстоянии, равном по меньшей мере 60 диаметрам трубопровода. В соответствии с предпочтительным вариантом осуществления для демодуляции электрических сигналов, формируемых датчиком давления, предусмотрен процессор в электрической связи с датчиком давления. В соответствии с предпочтительным вариантом осуществления энергия падающей продольной волны, поглощенная отражателем, составляет больше 20%. В соответствии с более предпочтительным вариантом осуществления поглощенная энергия превышает 30%. В соответствии с еще более предпочтительным вариантом осуществления поглощенная энергия превышает 40%. В соответствии с предпочтительным вариантом осуществления отражатель имеет значение параметра 1 (определенного в настоящей заявке) больше чем приблизительно 0,25. Более предпочтительно, чтобы 1 было больше 0,5, а еще более предпочтительно, чтобы оно было больше 1. 3 Отражателем может быть пластина с фиксированным отверстием, хотя в соответствии с предпочтительным вариантом осуществления используется регулируемая диафрагма. Изобретение также воплощено в способе для обнаружения телеметрических сигналов,проходящих от скважинного источника к поверхности через сжимаемую промывочную жидкость. Краткое описание чертежей На чертежах: фиг. 1 - система согласно предпочтительному варианту осуществления изобретения для акустической телеметрии с повышенным отношением сигнала к шуму по гидроимпульсному каналу связи во время бурения при пониженном гидростатическом давлении в стволе скважины; фиг. 2 - устройство для нагнетания газа и обычного измерения давления согласно прототипу; фиг. 3 - система для приема сигналов пульсаций давления бурового раствора в соответствии с предпочтительным вариантом осуществления изобретения; фиг. 4 - рабочая диаграмма, иллюстрирующая этапы в предпочтительном способе телеметрии во время бурения при пониженном гидростатическом давлении в стволе скважины. Подробное описание изобретения Нижеследующие варианты осуществления настоящего изобретения будут описаны применительно к определенным буровым установкам,хотя специалисты в данной области техники должны признать, что раскрытые способы и конструкции можно без труда приспособить для более широкого применения. В тех случаях,когда один и тот же ссылочный номер повторяется на различных фигурах, на каждой такой фигуре он относится к соответствующей конструкции. На фиг. 1 в соответствии с предпочтительным вариантом осуществления изобретения показана система для акустической телеметрии с повышенным отношением сигнала к шуму по гидроимпульсному каналу связи. Внутри ствола 46 скважины показана колонна 58 бурильных труб. Ствол 46 скважины находится в грунте 40,имеющем поверхность 42. Ствол 46 скважины пробурен при работе бурового долота 54. Буровое долото 54 расположено на отдаленном конце оборудования 56 нижней части скважины,которое закреплено в и образует нижнюю часть колонны 58 бурильных труб. Оборудование 56 нижней части скважины содержит ряд устройств, включая разнообразные узлы 60. В соответствии с изобретением узлы 60 представляют собой узлы для скважинных измерений в процессе бурения. Примеры типичных скважинных параметров, измеряемых в процессе бурения, включают в себя направление, угол наклона, разведочные данные, скважинное давление (внутри и вне бурильной колонны), 004467 4 удельное сопротивление, плотность и пористость. Сигналы от узлов для скважинных измерений в процессе бурения передаются в узел 64 генератора импульсов. В узле 64 генератора импульсов сигналы от узлов 60 преобразуются в импульсы давления в промывочной жидкости. Импульсы давления создаются в соответствии с конкретной кодовой комбинацией, которая характеризует данные от узлов 60. Импульсы давления являются либо положительными (возрастающими по давлению), либо отрицательными(убывающими по давлению), либо комбинацией положительных и отрицательных импульсов. Импульсы давления проходят вверх через промывочную жидкость в центральном отверстии колонны буровых труб и к наземной установке. Узлы 60 могут также включать в себя турбину или двигатель для создания движущей силы с целью вращения бурового долота 54. Наземная часть буровой установки включает в себя буровую вышку 68 и подъемное оборудование, систему вращения и систему 100 промывки буровым раствором. Подъемное оборудование, на котором подвешена колонна 58 бурильных труб, содержит буровую лебедку 70,крюк 72 и вертлюг 74. Система вращения содержит ведущую бурильную трубу 76, стол 88 бурового ротора и двигатели (не показанные). Система вращения сообщает усилие вращения колонне 58 бурильных труб, что хорошо известно в данной области техники. Хотя на фиг. 1 показана система с ведущей бурильной трубой и столом бурового ротора, специалисты в данной области техники должны признать, что настоящее изобретение также применимо в буровых установках с верхним приводом. Хотя буровая установка, показанная на фиг. 1, находится на суше, специалисты в данной области техники должны признать, что настоящее изобретение равным образом применимо в морских условиях. Система 100 промывки буровым раствором закачивает промывочную жидкость по центральному отверстию в колонне бурильных труб. Промывочную жидкость часто называют буровым раствором, и обычно он представляет собой смесь воды или дизельного топлива, особых глин и других химических веществ. Буровой раствор запасают в приемной емкости 78 для бурового раствора. Буровой раствор отбирается к буровым насосам 80, которые закачивают буровой раствор по нагнетательной трубе 86, а в ведущую бурильную трубу 76 через вертлюг 74,который имеет вращающееся уплотнение. Чтобы на практике осуществлять бурение при пониженном гидростатическом давлении в стволе скважины, в некоторых местах до входа в колонну бурильных труб в буровой раствор вводят газ. В установке, показанной на фиг. 1, газ,обычно азот, подается из источника 82 газа и нагнетается газовым инжектором 84. Выше по потоку от газового инжектора 84 буровой раствор имеет очень низкую сжимае 5 мость. Газовый инжектор 84 нагнетает газ в буровой раствор, вследствие чего жидкость ниже по потоку от газового инжектора 84 представляет собой смесь бурового раствора с низкой сжимаемостью и газа, обычно от нескольких процентов до 30%. Газ имеет высокую сжимаемость, и поэтому смесь двух текучих сред имеет пониженную плотность по сравнению с плотностью жидкости с низкой сжимаемостью, но имеет намного более высокую сжимаемость. Эффективная плотность смеси приблизительно равна произведению плотности бурового раствора с низкой сжимаемостью на (1 - доля газа). Это приводит к намного меньшей скорости звука и к пониженному акустическому импедансу по сравнению с промывочной жидкостью, не содержащей газа. Смесь бурового раствора и газа проходит по колонне 58 бурильных труб и через буровое долото 54. Когда зубья бурового долота дробят и вырубают земную породу с образованием бурового шлама, буровой раствор выбрасывается с большой скоростью и под большим давлением из отверстий или сопел в буровом долоте. Эти струи бурового раствора поднимают буровой шлам со дна скважины и удаляют от бурового долота вверх к поверхности в кольцевое пространство между колонной 58 бурильных труб и стенкой ствола 46 скважины. На поверхности буровой раствор и буровой шлам выходят из скважины через боковой отвод в противовыбросовом превенторе 99 и по трубопроводу 90 для возврата бурового раствора. Противовыбросовый превентор 99 содержит устройство для регулирования давления и вращающееся уплотнение. Трубопровод 90 для возврата бурового раствора подает буровой раствор в сепаратор 98, который отделяет буровой раствор от газа и также удаляет буровой шлам из бурового раствора, что предпочтительно. Из сепаратора 98 буровой раствор возвращается в приемную емкость 78 для бурового раствора для хранения и повторного использования. В соответствии с изобретением в нагнетательной трубе 86 ниже по потоку от газового инжектора 84 расположен отражатель 110. Как будет описано более подробно ниже, отражатель 110 функционирует для отражения импульсов давления, создаваемых узлом 64 генератора импульсов и проходящих вверх через буровой раствор. Пульсации давления бурового раствора обнаруживаются датчиком 92 давления, расположенным в нагнетательной трубе 86 ниже по потоку от отражателя 110. Датчик давления 92 содержит преобразователь, который преобразует пульсацию давления бурового раствора в электрические сигналы. Датчик 92 давления подключен к процессору 94, который преобразует сигнал, полученный на основании сигнала о давлении, в цифровую форму, запоминает и демодулирует цифровой сигнал в полезные данные скважинных измерений в процессе бурения. 6 Хотя на фиг. 1 отражатель 110 и датчик давления 92 показаны расположенными в нагнетательной трубе 86, они также могут находиться в других местах ниже по потоку от газового инжектора 84. На фиг. 2 показано обычное устройство для нагнетания газа и измерения давления согласно прототипу. На фиг. 2 показан участок нагнетательной трубы 86 около газового инжектора 84. Буровой раствор 102 с низкой сжимаемостью показан выше по потоку от газового инжектора 84 и протекающим вниз, что отображено стрелкой 112 направления потока. Как показано стрелкой 116 направления потока, устройство 82 для подачи газа подает газ, обычно азот, по трубопроводу 104. Поток газа регулируется, главным образом, клапаном 118, показанным схематично. Поверхность 108 раздела бурового раствора и газа показана пунктирной линией. Заметим, что на практике поверхность раздела между газом и буровым раствором не будет резко выраженной поверхностью, а скорее склонна быть смешанной зоной. Ниже по потоку от поверхности 108 раздела буровой раствор 106 представляет собой смесь бурового раствора с низкой сжимаемостью и газа, обычно от нескольких процентов до 30%. Как указывалось,смесь двух текучих сред имеет плотность, сравнимую с плотностью жидкости с низкой сжимаемостью, но, кроме того, имеет намного более высокую сжимаемость. Направление потока бурового раствора 106 с высокой сжимаемостью показано стрелкой 114 направления. Буровой раствор 102 с низкой сжимаемостью имеет намного более высокий акустический импеданс, чем буровой раствор 106 на основе смеси текучих сред, который имеет намного более низкий акустический импеданс. В этом смысле буровой раствор 102 может рассматриваться как жесткая система, а буровой раствор 106 как почти свободная система. Полагают, что акустическая волна 24, распространяющаяся вверх по столбу бурового раствора, отражается возле газового инжектора 84. Или точнее, отражение происходит на поверхности 108 раздела бурового раствора и газа. Считают, что это происходит потому, что поверхность 108 раздела бурового раствора и газа действует почти как свободная поверхность. Отраженная волна 26 показана распространяющейся назад от поверхности раздела. Существенно, что коэффициент отражения таких отраженных волн является отрицательным и может быть близок к -1. Поэтому полярность отраженной волны 26 противоположна полярности падающей волны 24 при почти равной амплитуде. В результате того, что коэффициент отражения на поверхности 108 раздела бурового раствора и газа близок к -1, датчик 20 давления около поверхности 108 раздела в этом обычном устройстве будет измерять сильно ослабленный сиг 7 нал, поскольку отраженная волна 26 почти гасит падающую волну 24. На фиг. 3 показано устройство для приема сигналов пульсаций давления бурового раствора в соответствии с предпочтительным вариантом осуществления изобретения. Конструкция нагнетательной трубы 86, газовый инжектор 84 и источник 82 газа описаны ранее со ссылкой на фиг. 2, и поэтому их описание здесь не будет повторяться. Отражатель 110 расположен внутри нагнетательной трубы 86 в месте, находящемся ниже по потоку от поверхности 108 раздела бурового раствора и газа. Отражатель 110 эффективно отражает часть падающей продольной волны 120, показанную в качестве отраженной волны 122, тогда как приемлемая прошедшая часть продольной волны показана в виде продольной волны 124. Прошедшая продольная волна 124 затем будет проходить к газовому инжектору 84 и отражаться от поверхности 108 раздела бурового раствора и газа. Отраженная волна 126 показана как отражение волны 124 от поверхности 108 раздела бурового раствора и газа. Кроме того, часть отраженной волны 126 проходит через отражатель 110. Существенно, что полярность отраженной волны 122 такая же, как полярность падающей волны 120. Кроме того, энергия волны, проходящей назад через отражатель (например, волны 126) и имеющей полярность, противоположную полярности падающей волны 120, намного меньше, чем в случае отсутствия отражателя 110. С достижением преимущества падение продольной волны, например волны 120, можно намного легче обнаружить на стороне отражателя 110, находящейся ниже по потоку. Датчик 92 давления, показанный на фиг. 3, расположен на стороне отражателя 110, находящейся нижепо потоку. Датчик 92 обнаруживает пульсации давления бурового раствора и содержит преобразователь, который преобразует давление бурового раствора в электрические сигналы. Датчик 92 давления подключен к процессору 94,который преобразует сигнал, полученный на основании сигнала о давлении, в цифровую форму, сохраняет и демодулирует цифровой сигнал в полезные данные скважинных измерений в процессе бурения. Длина волны пульсаций давления бурового раствора, обычно используемых для скважинной телеметрии, относительно большая. Поэтому нет необходимости располагать датчик давления 92 сразу же ниже по потоку от отражателя 110, а можно разместить ниже по потоку на отдалении, если такое размещение будет более практичным. Кроме того, как дополнительно подробно описано ниже, предпочтительно,чтобы датчик 92 давления был расположен ниже по потоку от отражателя 110 на расстоянии,превышающем 12 диаметров трубы. В случае фиг. 1 диаметром трубы должен быть диаметр 8 нагнетательной трубы 86. Еще более предпочтительно, чтобы датчик 92 давления был расположен ниже по потоку от отражателя 110 на расстоянии, превышающем 60 диаметров трубы. В соответствии с предпочтительным вариантом осуществления отражатель 110 представляет собой пластину с фиксированным отверстием, установленную в нагнетательной трубе 86. Отверстие действует как фиксированный дроссель в гидравлической системе, но также действует как отражатель в акустической системе. Поэтому отверстие обеспечивает положительный коэффициент отражения для волн, распространяющихся как выше по потоку, так и ниже по потоку, а при прохождении через него акустического сигнала также поглощает часть акустического сигнала. Поэтому путем установки дросселя между газовым инжектором 84 и датчиком 92 давления отношение сигнала к шуму на этом датчике можно повысить. Хотя отражение от поверхности раздела газа и жидкости все же будет отрицательным, амплитуда волны, падающей на эту поверхность раздела, будет меньшей и будет дополнительное положительное отражение от дросселя. Продольные волны, отраженные от отражателя 110, могут быть описаны математически следующим образом. Пусть где A1 - площадь поперечного сечения трубы ниже (или ниже по потоку) отражателя иc1 - скорость звука ниже отражателя (аналогично с нижним индексом и для случая выше(или выше по потоку) отражателя). В соответствии с изобретением полезный параметр отражателя, 1, определяется как где 1 - плотность промывочной жидкости ниже отражателя, - среднее падение давления на отражателе иV1 - средняя скорость потока ниже отражателя. Тогда коэффициент отражения ниже отверстия имеет вид Следовательно, обращаясь к фиг. 3, амплитуда давления волны 124 равна произведению амплитуды падающей волны 120 на Т, а ампли 9 туда давления отраженной волны 122 равна произведению амплитуды падающей волны 120 на R. Установлено, что 1 является полезным показателем эффективности отражателя 110. В общем случае при больших значениях 1 для отражателя обеспечивается лучшее обнаружение сигнала давления. На практике верхний предел 1 определяется максимальным приемлемым давлением на выходе насоса, прочими падениями давления в узлах буровой установки и давлением в межтрубном пространстве, необходимым для конкретного случая применения. Считается, что хорошее обнаружение продольной волны обеспечивается даже при 1 порядка 0,25. В соответствии с более предпочтительным вариантом осуществления значение 1 должно быть больше 0,5. Если 1 порядка 0,5 или больше, уровень сигнала давления может быть существенно повышен при многих применениях. В соответствии с еще более предпочтительным вариантом осуществления 1 больше 1. Считается, что, если 1 больше примерно 1, то отражатель 110 также может обеспечить значительное ослабление шума, поступающего от газового инжектора и насосов. Доля энергии в падающей волне 120, поглощенной отражателем 110, определяется выражением В соответствии с предпочтительным вариантом осуществления по меньшей мере 20% энергии падающей продольной волны должны поглощаться отражателем 110. В соответствии с более предпочтительным вариантом осуществления поглощение энергии в количестве приблизительно 30% будет обеспечивать существенное улучшение обнаружения сигнала при многих применениях. В соответствии с еще более предпочтительным вариантом осуществления в случае, если поглощение отражателем 110 энергии больше чем приблизительно 40%, можно также получить существенное снижение шума от газового инжектора и насосов. В соответствии с альтернативным предпочтительным вариантом осуществления отражатель 110 выполнен в виде регулируемой диафрагмы, например в виде регулируемого дросселя, который имеется в продаже. Посредством использования регулируемой диафрагмы эффективное значение 1 и поглощение энергии могут быть оптимизированы для конкретных условий. Например, при низких расходах промывочной жидкости размер отверстия диафрагмы можно уменьшить и, следовательно, улучшить прием сигнала, а при необходимости высоких расходов отверстие можно увеличить с тем, чтобы сохранить максимальную производительность насоса. 10 Хотя отражатель повышает силу сигнала,он сам может создавать шум. Поток жидкости,выходящий из небольшого сопла в трубу большего диаметра, создает локальное течение и флуктуации давления. Эти флуктуации, как правило, имеют небольшую амплитуду, однако,когда обнаруживаемый сигнал слабый, они могут мешать обнаружению сигнала. Флуктуации давления уменьшаются с расстоянием от отверстия, и поскольку только среднее по поперечному сечению локальных флуктуаций давлений способно распространяться на частотах, представляющих интерес, то характеристическим расстоянием степени спада является диаметр трубы. Поэтому в соответствии с предпочтительным вариантом осуществления датчик давления должен быть расположен ниже по потоку от отражателя на расстоянии, равном по меньшей мере 12 диаметрам трубы. В соответствии с более предпочтительным вариантом осуществления он находится ниже по потоку на расстоянии, равном по меньшей мере 60 диаметрам трубы. В одной компоновке датчик давления,расположенный ниже по потоку от рефлектора на расстоянии, равном приблизительно 75 диаметрам, обеспечил получение хороших результатов. На фиг. 3 диаметр трубы ниже по потоку от отражателя 110 показан ссылочной буквой d,a расстояние между датчиком 92 давления и отражателем 110 показано ссылочной буквой х. На фиг. 4 представлена рабочая диаграмма,иллюстрирующая этапы предпочтительного способа телеметрии согласно изобретению во время бурения при пониженном гидростатическом давлении в стволе скважины. На этапе 200 данные скважинных измерений в процессе бурения, полученные в нижней части скважины,преобразуют в цифровые сигналы. На этапе 210 цифровой сигнал модулируют для преобразования в пульсации давления бурового раствора. Как показано на фиг. 1, пульсации давления бурового раствора создаются узлом генератора импульсов. Пульсации давления бурового раствора проходят вверх по бурильной колонне к поверхности. На поверхности на этапе 212 пульсации давления бурового раствора обнаруживают посредством датчика давления, расположенного ниже соответствующего отражателя,что показано на фиг. 3. На этапе 214 сигнал давления от датчика давления демодулируют для преобразования в цифровой сигнал. На этапе 216 цифровой сигнал преобразуют обратно в данные скважинных измерений в процессе бурения. Хотя описаны предпочтительные варианты осуществления изобретения, описание является только иллюстративным и не предполагается ограничивающим настоящее изобретение. 11 ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Скважинная система связи для телеметрии через сжимаемую промывочную жидкость,содержащая источник промывочной жидкости, выполненный с возможностью подачи промывочной жидкости под давлением по трубопроводу к буровому долоту; впускное отверстие для газа, выполненное с возможностью подачи газа в промывочную жидкость, посредством которой уменьшается сжимаемость промывочной жидкости ниже по потоку от впускного отверстия; генератор импульсов в стволе скважины,выполненный с возможностью создания импульсов давления в сжимаемой промывочной жидкости, соответствующих заранее заданной кодовой комбинации; отражатель, расположенный ниже по потоку от впускного отверстия для газа, которому приданы нужные размеры, обеспечивающие создание в ответ на падающую продольную волну, прошедшую от генератора импульсов к поверхности, отраженной продольной волны,имеющей ту же самую полярность давления,что и падающая продольная волна; и датчик давления, расположенный ниже по потоку от отражателя, выполненный с возможностью обнаружения давления в сжимаемой промывочной жидкости и формирования электрических сигналов, соответствующих обнаруженному давлению. 2. Система по п.1, в которой трубопровод включает в себя колонну бурильных труб и наземные трубопроводы, а впускное отверстие для газа расположено на одном из наземных трубопроводов. 3. Система по п.2, в которой генератор импульсов расположен в оборудовании нижней части скважины около бурового долота. 4. Система по п.1, дополнительно содержащая процессор, связанный с датчиком давления, выполненный с возможностью демодуляции электрических сигналов, формируемых датчиком давления. 5. Система по п.1, в которой энергия падающей продольной волны, поглощенной отражателем, составляет больше 20%. 6. Система по п.5, в которой энергия падающей продольной волны, поглощенной отражателем, составляет больше 30%. 7. Система по п.6, в которой энергия падающей продольной волны, поглощенной отражателем, составляет больше 40%. 8. Система по п.1, в которой отражатель имеет значение 1 больше чем 0,25. 9. Система по п.8, в которой отражатель имеет значение 1 больше чем 0,5. 10. Система по п.9, в которой отражатель имеет значение 1 больше чем 1. 12 11. Система по п.1, в которой отражатель выполнен в виде пластины с отверстием. 12. Система по п.1, в которой отражатель содержит регулируемую диафрагму. 13. Система по п.1, в которой промывочная жидкость является высокосжимаемой жидкостью. 14. Система по п.1, в которой датчик давления расположен в трубопроводе ниже по потоку от отражателя на расстоянии от отражателя, большем чем 12 диаметров трубопровода. 15. Система по п.14, в которой датчик давления расположен на расстоянии от отражателя,большем чем 60 диаметров трубопровода. 16. Система по п.1, дополнительно содержащая источник газа, связанный посредством трубопровода с текучей средой,первый и второй датчики давления, установленные по каждую сторону от отражателя,расположенного в газовом трубопроводе. 17. Способ обнаружения телеметрических сигналов, проходящих от скважинного источника к поверхности через сжимаемую промывочную жидкость, содержащий этапы, при которых осуществляют отражение падающих продольных волн в сжимаемой промывочной жидкости, проходящих к поверхности, в результате которого образуются отраженные продольные волны, имеющие ту же самую полярность давления, что и падающие продольные волны; и регистрацию давления сжимаемой промывочной жидкости в месте ниже по потоку от места, где образуются отраженные волны. 18. Способ по п.17, в котором давление регистрируют, используя датчик давления, дополнительно содержащий этап, при котором осуществляют демодуляцию электрических сигналов,формируемых датчиком давления, с использованием процессора в электрической связи с датчиком давления. 19. Способ по п.17, в котором энергия падающей продольной волны, поглощенной при отражении, составляет больше 20%. 20. Способ по п.19, в котором энергия падающей продольной волны, поглощенной при отражении,составляет больше 40%. 21. Способ по п.17, в котором отражатель имеет значение 1 больше чем 0,25. 22. Способ по п.21, в котором отражатель имеет значение 1 больше чем 1. 23. Способ по п.17, в котором для создания отраженных волн используют регулируемую диафрагму. 24. Способ по п.17, в котором давление регистрируют в месте трубопровода, находящемся ниже по потоку на расстоянии от отражателя,большем чем 12 диаметров трубопровода. 25. Способ по п.24, в котором давление обнаруживают в месте на расстоянии от отражателя, большем чем 60 диаметров трубопровода.
МПК / Метки
МПК: E21B 47/18
Метки: устройство, скважине, способ, телеметрии, акустической
Код ссылки
<a href="https://eas.patents.su/8-4467-sposob-i-ustrojjstvo-dlya-akusticheskojj-telemetrii-v-skvazhine.html" rel="bookmark" title="База патентов Евразийского Союза">Способ и устройство для акустической телеметрии в скважине</a>
Предыдущий патент: Способ регулирования потока текучей среды в нефтедобывающую и/или газодобывающую скважину
Следующий патент: Управление производством потока продукта сжиженного природного газа
Случайный патент: Комбинации биологически активных веществ