Диаграммоформирующее устройство для многолучевого приема ультразвуковых сигналов
Номер патента: 23835
Опубликовано: 29.07.2016
Авторы: Нагулин Сергей Николаевич, Нагулин Николай Евгеньевич
Формула / Реферат
1. Диаграммоформирующее устройство для многолучевого приема ультразвуковых сигналов, содержащее приемно-передающий модуль, в состав которого входят приемные каналы сигналов с элементов ультразвукового датчика, каждый приемный канал сигналов электрически соединен через индивидуальный аналого-цифровой преобразователь с первичной оперативной памятью типа FIFO, которая, в свою очередь, соединена с первичным фильтром-интерполятором, а также содержащее вторичную оперативную память типа FIFO, умножители, мультиплексоры и сумматоры, отличающееся тем, что первичная оперативная память типа FIFO соединена с первичным блоком сдвиговых регистров, выходы первичного фильтра-интерполятора и первичного блока сдвиговых регистров соединены с соответствующими входами двух вторичных фильтров-интерполяторов, при этом первичный блок сдвиговых регистров, первичный фильтр-интерполятор и вторичные фильтры-интерполяторы соединены через вторичные блоки сдвиговых регистров с соответствующими входами формирователей лучей, каждый из которых соединен с соответствующим сумматором каналов и включает последовательно соединенные мультиплексор, вторичную оперативную память типа FIFO и умножитель, кроме того, каждый фильтр-интерполятор представляет собой фильтр-интерполятор с фиксированной симметричной импульсной характеристикой и включает соединенные между собой сдвиговые регистры, промежуточные сумматоры, умножители и общий сумматор, при этом в первичном фильтре-интерполяторе сдвиговые регистры объединены в один ряд, соединенный с первичной оперативной памятью типа FIFO, а во вторичном фильтре-интерполяторе сдвиговые регистры объединены в два ряда, один из которых соединен с первичным блоком сдвиговых регистров, а другой - с первичным фильтром-интерполятором.
2. Диаграммоформирующее устройство по п.1, отличающееся тем, что электрическое соединение между элементами устройства осуществлено посредством шин данных.
3. Диаграммоформирующее устройство по п.1, отличающееся тем, что число приемных каналов сигналов соответствует количеству одновременно используемых элементов ультразвукового датчика.

Текст
ДИАГРАММОФОРМИРУЮЩЕЕ УСТРОЙСТВО ДЛЯ МНОГОЛУЧЕВОГО ПРИЕМА УЛЬТРАЗВУКОВЫХ СИГНАЛОВ Изобретение относится к области медицинского приборостроения, в частности к устройствам для ультразвуковой эхолокации внутренних органов, и может быть использовано в системах медицинской диагностики. Обеспечивает снижение аппаратных затрат для улучшения динамики формирования ультразвукового изображения. Устройство содержит приемно-передающий модуль,в состав которого входят приемные каналы сигналов с элементов ультразвукового датчика. Каждый приемный канал электрически соединен через индивидуальный аналого-цифровой преобразователь с первичной оперативной памятью типа FIFO, которая в свою очередь соединена с первичным фильтром-интерполятором. Первичная оперативная память типаFIFO соединена с первичным блоком сдвиговых регистров. Выходы первичного фильтраинтерполятора и первичного блока сдвиговых регистров соединены с соответствующими входами двух вторичных фильтров-интерполяторов. Первичный блок сдвиговых регистров,первичный фильтр-интерполятор и вторичные фильтры-интерполяторы соединены через вторичные блоки сдвиговых регистров с соответствующими входами формирователей лучей. Каждый формирователь лучей соединен с соответствующим сумматором каналов и включает последовательно соединенные мультиплексор, вторичную оперативную память типа FIFO и умножитель. Каждый фильтр-интерполятор представляет собой фильтр-интерполятор с фиксированной симметричной импульсной характеристикой. В первичном фильтре-интерполяторе сдвиговые регистры объединены в один ряд, соединенный с первичной оперативной памятью типаFIFO. Во вторичном фильтре-интерполяторе сдвиговые регистры объединены в два ряда, один из которых соединен с первичным блоком сдвиговых регистров, а другой - с первичным фильтроминтерполятором.(71)(73) Заявитель и патентовладелец: ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СПЕКТРОМЕД" (RU) Настоящее изобретение относится к области медицинского приборостроения, в частности к устройствам для ультразвуковой эхолокации внутренних органов, и может быть использовано в системах медицинской диагностики. Из существующего уровня техники известно многолучевое ультразвуковое диаграммоформирующее устройство (ДФУ) для обеспечения высокой частоты кадров формируемого изображения, каждый канал которого включает в себя аналого-цифровой преобразователь (АЦП), модуль формирования задержки сигнала, модуль аподизации и сумматоры (United States Patent 5905692, опубл. 18.05.1999). Недостатком данного технического решения является то, что при реализации многолучевого приема увеличение количества приемных каналов связано с пропорциональным увеличением количества фильтровинтерполяторов и соответственно аппаратных затрат, а также стоимости устройства. Также из уровня техники известно диаграммоформирующее устройство для многолучевого приема ультразвуковых сигналов, содержащее приемно-передающий модуль, в состав которого входят приемные каналы сигналов с элементов датчика, каждый приемный канал сигналов электрически соединен через индивидуальный аналого-цифровой преобразователь с первичной оперативной памятью типа FIFO,которая, в свою очередь, соединена с фильтром-интерполятором, а также содержащее вторичную оперативную память типа FIFO, умножители, мультиплексоры и сумматоры (см., например, United States Patent 6695783, опубл. 24.02.2004). В данном техническом решении увеличение количества приемных каналов не приводит к пропорциональному увеличению количества фильтров-интерполяторов. Однако недостатком этого устройства являются избыточные аппаратные затраты на формирование интерполированных отсчетов сигнала, поскольку реализованное формирование интерполированных отсчетов сигнала не учитывает того, что при реализации дробной задержки сигнала, равной 0.5 интервала дискретизации, количество умножителей за счет использования симметричной импульсной характеристики фильтра-интерполятора может быть сокращено в два раза, а также того, что нет необходимости выполнять вычислительные операции, когда дробная задержка сигнала равна нулю. Недостатком являются также избыточные аппаратные затраты,связанные с необходимостью постоянной перестройки коэффициентов фильтра-интерполятора с тактом поступления отсчетов сигнала. Задачей, на решение которой направлено заявляемое техническое решение, является снижение аппаратных затрат для улучшения динамики формирования ультразвукового изображения. Данная задача решается за счет того, что в заявленном диаграммоформирующем устройстве для многолучевого приема ультразвуковых сигналов, содержащем приемно-передающий модуль, в состав которого входят приемные каналы сигналов с элементов датчика, каждый приемный канал сигналов электрически соединен через индивидуальный аналого-цифровой преобразователь с первичной оперативной памятью типа FIFO, которая, в свою очередь, соединена с первичным фильтром-интерполятором,а также содержащее вторичную оперативную память типа FIFO, умножители, мультиплексоры и сумматоры, согласно изобретению, первичная оперативная память типа FIFO соединена с первичным блоком сдвиговых регистров, выходы первичного фильтра-интерполятора и первичного блока сдвиговых регистров соединены с соответствующими входами двух вторичных фильтров-интерполяторов, при этом первичный блок сдвиговых регистров, первичный фильтр-интерполятор и вторичные фильтрыинтерполяторы соединены через вторичные блоки сдвиговых регистров с соответствующими входами формирователей лучей, каждый из которых соединен с соответствующим сумматором каналов и включает последовательно соединенные мультиплексор, вторичную оперативную память типа FIFO и умножитель, кроме того, каждый фильтр-интерполятор представляет собой фильтр-интерполятор с фиксированной симметричной импульсной характеристикой и включает соединенные между собой сдвиговые регистры, промежуточные сумматоры, умножители и общий сумматор, при этом в первичном фильтреинтерполяторе сдвиговые регистры объединены в один ряд, соединенный с первичной оперативной памятью типа FIFO, а во вторичном фильтре-интерполяторе сдвиговые регистры объединены в два ряда,один из которых соединен с первичным блоком сдвиговых регистров, а другой - с первичным фильтроминтерполятором. Электрическое соединение между элементами устройства может быть осуществлено посредством шин данных. Число приемных каналов сигналов может соответствовать количеству одновременно используемых элементов ультразвукового датчика. Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является снижение аппаратных затрат для увеличения частоты кадров, влияющей на улучшения динамики формирования ультразвукового изображения, за счет конструктивного выполнения всего устройства, в частности за счет того, что каждый фильтр-интерполятор представляет собой фильтр-интерполятор с фиксированной симметричной импульсной характеристикой, причем в первичном фильтре-интерполяторе сдвиговые регистры объединены в один ряд, соединенный с первичной оперативной памятью типа FIFO, а во вторичном фильтре-интерполяторе сдвиговые регистры объединены в два ряда, один из которых соединен с первичным блоком сдвиговых регистров, а другой - с первичным фильтром-интерполятором. Таким образом, обеспечивается полная загрузка вычислительных средств фильтров-интерполяторов за счет организации вычислительного процесса таким образом, чтобы в любой момент времени фильтринтерполятор использовался только для формирования дробной задержки и не простаивал, когда не требуется формировать дробную задержку сигнала. Кроме того, использование фильтров-интерполяторов с фиксированной симметричной импульсной характеристикой позволяет сократить в два раза число умножителей, а также, поскольку в отличие от аналога в процессе вычислений фильтры-интерполяторы не изменяют свою импульсную характеристику, то имеется возможность использовать упрощенную структуру умножителей, реализующих операцию умножения в составе фильтра-интерполятора только на фиксированный коэффициент. Сущность заявленного устройства поясняется чертежами, не охватывающими и, тем более, не ограничивающими объем притязаний по данному решению, а лишь являющимися иллюстрирующими материалами частного случая выполнения устройства. На чертежах изображено: на фиг. 1 - блок-схема устройства; на фиг. 2 - структурная схема фильтра-интерполятора 8-го порядка для выполнения первого этапа интерполяции; на фиг. 3 - структурная схема фильтра-интерполятора 8-го порядка для выполнения второго этапа интерполяции; на фиг. 4 - временная диаграмма формирования результатов плавной задержки сигнала; на фиг. 5 - временная диаграмма работы устройства в режиме дополнительного формирования лучей путем временного мультиплексирования. Устройство включает приемно-передающий модуль, в состав которого входят N приемных каналов сигналов 1/11/N в соответствии с количеством одновременно используемых элементов датчика. Каждый приемный канал сигналов 1/j, j = 1, 2, , N электрически соединен через индивидуальный аналого-цифровой преобразователь 2 с первичной оперативной памятью 3 типа FIFO. Первичная оперативная память 3 типа FIFO соединена с первичным блоком сдвиговых регистров 4 и с первичным фильтром-интерполятором 5. Выходы первичного фильтра-интерполятора 5 и первичного блока сдвиговых регистров 4 соединены с соответствующими входами двух вторичных фильтров-интерполяторов 6, 7. Первичный блок сдвиговых регистров 4, первичный фильтр-интерполятор 5 и вторичные фильтрыинтерполяторы 6, 7 соединены через соответствующие вторичные блоки сдвиговых регистров 8, 9, 10, 11 с соответствующими входами формирователей 12 лучей. Каждый формирователь 12 лучей включает последовательно соединенные мультиплексор 13, вторичную оперативную память 14 типа FIFO и умножитель 15 и соединен с соответствующим сумматором 16 каналов. Число L формирователей 12 лучей равно числу L сумматоров 16 каналов, т.е. для L формирователей лучей 12/112/L, используются L сумматоров каналов 16/116/L. Каждый фильтр-интерполятор представляет собой фильтр-интерполятор с фиксированной симметричной импульсной характеристикой. Каждый фильтр-интерполятор 5, 6, 7 включает соединенные между собой сдвиговые регистры 17, промежуточные сумматоры 18, умножители 19 и общий сумматор 20. При этом каждый фильтр-интерполятор 5, 6, 7 М-го порядка содержит сдвиговые регистры 17/117/М,сумматоры 18/118/(М/2), умножители 19/119/(М/2) и сумматор 20. В первичном фильтреинтерполяторе 5 сдвиговые регистры 17 объединены в один ряд, соединенный с первичной оперативной памятью 3 типа FIFO. Во вторичных фильтрах-интерполяторах 6, 7 сдвиговые регистры 17 объединены в два ряда, один из которых соединен с первичным блоком сдвиговых регистров 4, а другой - с первичным фильтром-интерполятором 5. Устройство обеспечивает многолучевой прием ультразвукового сигнала на основе динамической перестройки системы задержек сигнала, представленного последовательностью цифровых данных. При этом грубая перестройка задержки сигнала с точностью до шага дискретизации входного сигнала осуществляется на основе использования первичной и вторичной оперативной памяти 3, 14 типа FIFO, а плавная (дробная) задержка с более высокой точностью, чем шаг дискретизации сигнала, выполняется с помощью первичного и вторичных фильтров-интерполяторов 5, 6, 7. Первичный и вторичный фильтрыинтерполяторы 5, 6, 7 формируют все возможные плавные задержки сигнала, которые затем используются для формирования всех приемных лучей. Приемно-передающий модуль выполнен, преимущественно,в виде корпуса. По результатам многих исследований (United States Patent 6695783, опубл. 24.02.2004) считается,что минимальный шаг изменения задержки сигнала, дальнейшее уменьшение которого не будет приводить к заметному увеличению качества формируемого изображения, составляет величину 1/(16fc), где fc рабочая частота датчика. При этом коэффициент интерполяции K задается соотношениемK = 16fC/fS, (1) где fS - частота дискретизации ультразвукового сигнала. Если рабочая частота датчика fC не превышает 12.5 МГц, что соответствует подавляющему числу практических применений, то, как следует из формулы (1), при частоте дискретизации ультразвукового сигнала fS = 50 МГц достаточно, чтобы коэффициент интерполяции K составлял величину, равную 4. При этом фильтр-интерполятор должен обеспечивать задержку сигнала с шагом 0.25TS, где TS = 1/fS темп дискретизации ультразвукового сигнала, т.е. формировать набор дробных задержек сигнала: 0.25TS,-2 023835 0.5TS, 0.75TS. Коэффициент интерполяции K, равный 4, может быть использован и для ультразвуковых датчиков с более высокой рабочей частотой за счет увеличения скорости работы АЦП. Например, если применять ультразвуковые датчики с максимальной рабочей частотой 15 МГц, то для K = 4 достаточно, чтобы АЦП обеспечивал частоту дискретизации сигнала fS = 60 МГц. Работает устройство следующим образом. В соответствии с блок-схемой фиг. 1 в каждом приемном канале 1/j, j = 1, 2, , N сигнал после аналого-цифрового преобразователя 2, работающего с частотой fS,поступает в первичную оперативную память 3 типа FIFO, где осуществляется первый этап грубой задержки сигнала. На первом этапе грубой задержки сигнала первичная оперативная память 3 типа FIFO обеспечивает с точностью до интервала дискретизации сигнала TS = 1/fS компенсацию задержки сигналов между приемными каналами 1/11/N сигналов устройства. Для практических применений задержка в первичной оперативной памяти 3 типа FIFO составляет величину порядка 1024 периодов тактовой частоты работы устройства, равной частоте дискретизации ультразвукового сигнала fS. Последовательность отсчетов сигнала Xi с выхода первичной оперативной памяти 3 типа FIFO поступает одновременно на входы первичного блока сдвиговых регистров 4 и первичного фильтраинтерполятора 5. С помощью первичного фильтра-интерполятора 5 выполняется первый этап интерполяции, на котором формируются отсчеты входного сигнала, задержанные на половину интервала дискретизации сигнала, т.е. на величину 0.5TS. В результате фильтрации на выходе первичного фильтра интерполятора 5 формируется последовательность отсчетов сигнала Xi+0,5. Первичный фильтр-интерполятор 5 является нерекурсивным и использует симметричную импульсную характеристику, удовлетворяющую соотношению (Л. Рабинер, Б. Гоулд. Теория и применение цифровой обработки сигналов. М.: Мир, 1978, с. 93)hm = hM-m+1, m = 1, 2, , М, (2) где hm - значения импульсной характеристики; М - порядок фильтра, являющийся четным числом. Применение симметричной импульсной характеристики позволяет по сравнению со стандартной реализацией фильтра сократить в два раза количество умножителей. Вариант реализации фильтра-интерполятора 5 с симметричной импульсной характеристики для порядка фильтра М = 8 представлен на фиг. 2. Вычисления в фильтре-интерполяторе 5 производятся по формуле Частичные суммы (см. правую часть выражения (3 перед выполнением операций умножения реализуется с помощью сумматоров 18/118/(М/2), а операции умножения на коэффициенты фильтраh1,h2, , hM/2 - с помощью умножителей 19/119/(М/2). Поскольку каждый умножитель выполняет в процессе вычислений умножение только на фиксированное число, то он может быть реализован по упрощенной схеме с жесткой логикой работы или табличным способом. При построении ДФУ с использованием ПЛИС (программируемых интегральных логических схем) такой подход позволяет сократить количество логических элементов, необходимых для реализации операций умножения. Окончательный результат фильтрации формируется на выходе сумматора 20. Первичный блок сдвиговых регистров 4 используется для выравнивания потока отсчетов входных данных Xi с потоком результатов вычислений Xi+0.5 первичного фильтра-интерполятора 5 с целью их одновременного использования во вторичных фильтрах-интерполяторах 6, 7 на втором этапе интерполяции. Формирование отсчетов входного сигнала, задержанных на величину 0.25 TS, производится с помощью вторичного фильтра-интерполятора 6 путем обработки отсчетов сигнала Xi и Xi+0.5 по формуле (4) Соответственно, задержка входного сигнала на дробную задержку 0.75 TS выполняется вторичным фильтром-интерполятором 7 путем обработки отсчетов сигнала Xi и Xi+0.5 по формуле (5) аналогичны. Конструктивное отличие между первичным фильтром-интерполятором 5 и вторичными фильтрами-интерполяторами 6, 7 заключается в организации связей между входящими в их состав сдвиговыми вследствие того, что в случае первичного фильтра-интерполятора 5, на его вход поступают отсчеты только одной последовательности данных Xi от первичной оперативной памяти 3 типа FIFO, а на входы вторичных фильтров-интерполяторов 6, 7 поступают одновременно отсчеты двух последовательностей данных: последовательности отсчетов Xi от первичного блока сдвиговых регистров 4 и последовательности отсчетов Xi+0.5 от первичного фильтра-интерполятора 5. После выравнивания потоков данных, поступающих с первичного блока сдвиговых регистров 4,первичного фильтра-интерполятора 5 и вторичных фильтров-интерполяторов 6, 7 на выходах вторичных блоков сдвиговых регистров 8-11 одновременно формируются все возможные задержки каждого отсчета сигнала в соответствии с временной диаграммой, представленной на фиг. 4. На фиг. 4 представлены данные на выходе вторичного блока сдвиговых регистров 8 (позиция А), которые являются отсчетами входного сигнала, сформированными непосредственно после аналого-цифрового преобразования, и соответствующими нулевой дробной задержке. Отсчеты сигнала с дробной задержкой 0.5 TS (позиция Б) на выходе вторичного блока сдвиговых регистров 9 формируются на первом этапе интерполяции из входных отсчетов сигнала с помощью первичного фильтра-интерполятора 5. Отсчеты сигнала с дробными задержками 0.25 TS (позиция В) и 0.75 TS (позиция Г) формируются соответственно вторичным фильтроминтерполятором 6 и вторичным фильтром-интерполятором 7 на втором этапе интерполяции из входных отсчетов сигнала и результатов вычисления отсчетов с дробной задержкой 0.5 TS с помощью первичного фильтра-интерполятора 5. Таким образом, на входах формирователей 12 лучей в любой момент времени присутствует полный набор значений плавных задержек сигнала. В аналоге изобретения для реализации полного набора дробных задержек сигнала требуется 4 М умножителей, работающих с тактом работы ДФУ (United States Patent 6695783, опубл. 24.02.2004). В заявляемом же изобретении количество умножителей, необходимых для реализации полного набора дробных задержек сигнала, составляет величину 3 М/2, что приблизительно в 2.7 раза меньше, чем в аналоге изобретения. В каждом формирователе 12 луча при выполнении динамической фокусировки с помощью мультиплексора 13 производится выбор необходимого значения плавной задержки сигнала. Затем с помощью вторичной оперативной памяти 14 типа FIFO осуществляется второй этап грубой задержки - уникальной для каждого из L одновременно формируемых лучей. Для практических применений задержка во вторичной оперативной памяти 14 типа FIFO составляет величину порядка 64-х периодов тактовой частоты. Для реализации функции аподизации ультразвукового луча умножитель 15 выполняет амплитудное взвешивание отсчетов сигнала. Объединение сигналов от различных элементов датчика, поступающих в приемные каналы 1, 2, ,N, производится с помощью сумматоров 16 каналов. Причем, как показано на фиг. 1, для формирования каждого луча используется отдельная группа сумматоров каналов таким образом, что данные с выхода iтого сумматора 16/i, i = 1, 2, , L, каждого j-го канала, j = 1, 2, , N-1, поступают на вход i-го сумматора 16/i, i = 1, 2, , L, j+1-го канала. При этом результирующий сигнал, соответствующий i-му лучу,i = 1, 2, , L, формируется на выходе i-го сумматора N-го канала. В случае низкочастотных датчиков, в частности датчиков, используемых при проведении кардиологических исследований, имеется возможность уменьшить полосу пропускания приемного тракта с соответствующим уменьшением частоты дискретизации эхо-сигнала. При этом с уменьшением частоты дискретизации эхо-сигнала уменьшатся и аппаратные затраты, необходимые для формирования заданного количества лучей. В результате появляется возможность высвободившиеся вычислительные ресурсы использовать для формирования нескольких дополнительных лучей в режиме разделения процессорного времени - временного мультиплексирования. Количество дополнительных приемных лучей, реализуемых в режиме временного мультиплексирования, зависит от рабочей частоты датчика. Если за счет уменьшения частоты дискретизации вычислительные затраты, необходимые для формирования одного луча, уменьшаются в Р раз, то появляется возможность формировать одновременно Р групп лучей с L лучами в каждой группе. При этом общее количество одновременно формируемых лучей будет равно PL. Предположим, например, что частота дискретизации аналого-цифрового преобразователя 2 выбрана таким образом, что приемный тракт диаграммоформирующего устройства рассчитан на максимальную рабочую частоту датчика 10 МГц. Тогда при использовании датчика с рабочей частотой 5 МГц частота дискретизации сигнала может быть уменьшена в 2 раза. Соответственно, при L = 4 устройство может обеспечить за счет временного мультиплексирования формирование дополнительно 4-х лучей. Формирование акустических линий с использованием временного мультиплексирования реализуется путем выстраивания отсчетов сигналов для формирования нескольких линий в единый поток данных с последующей обработкой их на одном вычислительном устройстве. Временное мультиплексирование осуществляется с тактовой частотой работы диаграммоформирующего устройства. Например, если устройство реализует в режиме временного мультиплексирования формирование четырех групп приемных лучей, то из первичной оперативной памяти 3 типа FIFO, выполняющей функцию грубой задержки сиг-4 023835 нала, будут последовательно выгружаться отсчеты всех четырех групп лучей с тактовой частотой работы устройства. Временная диаграмма выгрузки отсчетов сигнала из первичной оперативной памяти 3 типаFIFO для формирования 4-х групп лучей G1-G4 в режиме временного мультиплексирования представлена на фиг. 5. В соответствии с временной диаграммой, представленной на фиг. 5, в первый такт частоты выдается отсчет для формирования первой группы L лучей G1, во второй такт - отсчет второй группы лучей G2, в третий такт - отсчет третьей группы лучей G3, в четвертый такт - отсчет четвертой группы лучей G4 (см. фиг. 5). Далее процесс повторяется. Причем данные каждой группы лучей задерживаются в первичной оперативной памяти 3 типа FIFO на различную величину задержки в соответствии с реализуемой фокусировкой. Далее формирование лучей производится на одних и тех же вычислительных средствах диграммоформирующего устройства в режиме разделения процессорного времени между отсчетами сигнала, относящихся к разным группам лучей. Применение в системах медицинской диагностики диаграммоформирующего устройства для многолучевого приема ультразвуковых сигналов позволит создавать ультразвуковые аппараты для визуализации состояния внутренних органов человека, выполняющие точные диагностические исследования с получением изображений, обладающих высоким диагностическим качеством, за счет достигаемого в настоящем техническом решении результата, заключающегося в улучшении динамики формирования ультразвукового изображения. Кроме того, снижение аппаратных затрат по сравнению с устройствамианалогами позволит уменьшить себестоимость изделия, а также уменьшить его габариты и потребляемую мощность, что позволит использовать устройство как в составе стационарных, так и в портативных ультразвуковых аппаратах. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Диаграммоформирующее устройство для многолучевого приема ультразвуковых сигналов, содержащее приемно-передающий модуль, в состав которого входят приемные каналы сигналов с элементов ультразвукового датчика, каждый приемный канал сигналов электрически соединен через индивидуальный аналого-цифровой преобразователь с первичной оперативной памятью типа FIFO, которая, в свою очередь, соединена с первичным фильтром-интерполятором, а также содержащее вторичную оперативную память типа FIFO, умножители, мультиплексоры и сумматоры, отличающееся тем, что первичная оперативная память типа FIFO соединена с первичным блоком сдвиговых регистров, выходы первичного фильтра-интерполятора и первичного блока сдвиговых регистров соединены с соответствующими входами двух вторичных фильтров-интерполяторов, при этом первичный блок сдвиговых регистров, первичный фильтр-интерполятор и вторичные фильтры-интерполяторы соединены через вторичные блоки сдвиговых регистров с соответствующими входами формирователей лучей, каждый из которых соединен с соответствующим сумматором каналов и включает последовательно соединенные мультиплексор, вторичную оперативную память типа FIFO и умножитель, кроме того, каждый фильтринтерполятор представляет собой фильтр-интерполятор с фиксированной симметричной импульсной характеристикой и включает соединенные между собой сдвиговые регистры, промежуточные сумматоры, умножители и общий сумматор, при этом в первичном фильтре-интерполяторе сдвиговые регистры объединены в один ряд, соединенный с первичной оперативной памятью типа FIFO, а во вторичном фильтре-интерполяторе сдвиговые регистры объединены в два ряда, один из которых соединен с первичным блоком сдвиговых регистров, а другой - с первичным фильтром-интерполятором. 2. Диаграммоформирующее устройство по п.1, отличающееся тем, что электрическое соединение между элементами устройства осуществлено посредством шин данных. 3. Диаграммоформирующее устройство по п.1, отличающееся тем, что число приемных каналов сигналов соответствует количеству одновременно используемых элементов ультразвукового датчика.
МПК / Метки
МПК: G01N 29/36, G01S 3/80, A61B 8/00
Метки: многолучевого, приема, устройство, ультразвуковых, сигналов, диаграммоформирующее
Код ссылки
<a href="https://eas.patents.su/8-23835-diagrammoformiruyushhee-ustrojjstvo-dlya-mnogoluchevogo-priema-ultrazvukovyh-signalov.html" rel="bookmark" title="База патентов Евразийского Союза">Диаграммоформирующее устройство для многолучевого приема ультразвуковых сигналов</a>
Предыдущий патент: Способ аккумулирования ветровой энергии
Следующий патент: Стеблеподъемник
Случайный патент: Флотационная машина