Циклонный сепаратор и способ дегазации смеси текучей среды
Номер патента: 15603
Опубликовано: 31.10.2011
Авторы: Кьюроул Майкл Элвин, Беттинг Марко, Пёйк Эрик Йоханнес, Коленбрандер Герардус Виллем, Клавер Теодорус Корнелис
Формула / Реферат
1. Способ дегазации смеси текучей среды в циклонном сепараторе, в котором сырая нефть используется в качестве несущей жидкости, а один или несколько газообразных и/или испаряющихся компонентов содержат природный газ и/или конденсаты, такие как метан, этан, пропан, бутан и пентан, диоксид углерода и/или сероводород, в котором
поток смеси текучей среды ускоряют в секции (6) горловины вихревой трубы (1) таким образом, что снижается статическое давление смеси текучей среды, и испаряющиеся компоненты испаряются в газообразную фазу;
потоку смеси текучей среды придают вихревое движение в вихревой трубе (1) так, чтобы поток смеси текучей среды под действием центробежных сил разделился на поток (L) дегазированной жидкостной фракции и поток (G) обогащенной газом фракции;
индуцируют течение дегазированной жидкостной фракции в выпускной канал (4, 23) для жидкости, который расположен на наружной окружности вихревой трубы (1) или вблизи нее; и
индуцируют течение обогащенной газом фракции в выпускной канал (3) для газа, который расположен по центральной оси (7) вихревой трубы (1) или вблизи нее;
отличающийся тем, что потоку смеси текучей среды придают вихревое движение посредством лопастей (8), обеспечивающих вихревое движение необработанной среды в кольцеобразной секции (6) горловины, образованной между внутренней поверхностью раструба ближайшего конца (1А) вихревой трубы (1) и наружной поверхностью стенки (3А) выпускного канала (3) для газа.
2. Способ по п.1, в котором
индуцируют вихревое течение дегазированной жидкости вдоль внутренней поверхности вихревой трубы (1) в направлении вниз по потоку от ближайшего конца (1А) в направлении к периферийному концу (13) вихревой трубы (1) и выводят через кольцеобразный выпускной канал (4) для жидкости, который расположен коаксиально между пулевидным отражательным элементом (5) и внутренней поверхностью периферийного конца (13) вихревой трубы (1);
индуцируют течение обогащенной газом фракции в режиме вихревого противотока от носовой секции пулевидного отражательного элемента (5) в направлении выпускного отверстия канала (3) для газа, который расположен коаксиально внутри ближайшего конца (1А) вихревой трубы (1); и
ближайший конец (1А) вихревой трубы (1) имеет раструб, который соединен с входным трубопроводом (2) для смеси текучей среды таким образом, чтобы сформировался кольцеобразный канал (2С) для входа смеси текучей среды, который коаксиально окружает стенки выпускного канала (3) для газа, причем в этом канале (2С) расположен ряд лопастей (8), обеспечивающих завихрение, что индуцирует ускоренный поток смеси текучей среды в вихревом режиме внутри вихревой трубы (1).
3. Способ по п.2, в котором пулевидный отражательный элемент (5) имеет коническую носовую часть и в значительной степени цилиндрическую хвостовую секцию и периферийный конец (13) вихревой трубы (1) имеет расходящуюся форму в направлении вниз по потоку.
4. Способ по п.2, в котором выпускной канал (3) для газа расположен коаксиально вокруг торпедообразного центрального элемента (9), имеющего секции конического носа и хвоста и в значительной степени цилиндрическую среднюю секцию; и
обогащенную газом фракцию в выпускном канале (3) для газа стабилизируют с помощью блока (10) лопастей, удаляющих завихрения, который расположен в выпускном отверстии канала (3) для газа, между наружной поверхностью центрального элемента (9) и внутренней поверхностью стенки центрального канала выпускного канала (3) для газа.
5. Способ по п.4, в котором выпускной канал (3) для газа имеет кольцеобразный вход (3В), который играет роль искателя вихря при движении потока обогащенной газом фракции в режиме вихревого противотока (12) вокруг центральной оси (7) вихревой трубы (1), причем этот режим вихревого противотока (12) индуцируется на кромке носовой секции пулевидного отражательного элемента (5) за счет эффекта Ранка-Хилза.
6. Способ по п.2, в котором обеспечивающие завихрение лопасти (8) расположены в секции кольцеобразного впускного канала (2С) для входа текучей среды, в котором входной трубопровод для текучей среды имеет внутренний диаметр больше, чем другие участки трубопровода для входа текучей среды, причем лопасти (8) индуцируют течение потока смеси с дозвуковой скоростью через кольцеобразный впускной канал (2С) для входа текучей среды, и смесь текучей среды ускоряется в значительной степени до околозвуковой или сверхзвуковой скорости в ближайшем конце (1А) вихревой трубы (1) в форме раструба.
7. Циклонный сепаратор для осуществления способа по пп.1-6, который содержит
вихревую трубу (1), имеющую секцию (6) горловины, в которой смесь текучей среды ускоряется таким образом, что снижается статическое давление смеси текучей среды и испаряющиеся компоненты испаряются в газовую фазу;
одну или несколько сообщающих вихревое движение потоку лопастей (8) для индуцирования вихревого потока смеси текучей среды внутри вихревой трубы (1), таким образом обеспечивается разделение смеси под действием центробежных сил на поток (L) дегазированной жидкостной фракции и поток (G) обогащенной газом фракции;
выпускной канал (4) для дегазированной жидкости, который расположен на наружной окружности вихревой трубы (1) или вблизи нее, для выпуска дегазированной жидкой фракции; и
выпускной канал (3) для газа, который расположен по центральной оси (7) вихревой трубы (1) или вблизи нее, для выпуска обогащенной газом фракции;
отличающийся тем, что одна или несколько лопастей (8), сообщающих вихревое движение потоку, расположены в кольцеобразной секции (6) горловины, образованной между внутренней поверхностью раструба ближайшего конца (1А) вихревой трубы (1) и наружной поверхностью стенки (3А) выпускного канала (3) текучей среды, и сообщают потоку необработанной текучей среды вихревое движение в кольцеобразной секции (6) горловины.
8. Циклонный сепаратор по п.7, в котором
вихревая труба (1) включает ближайший конец (1А) и периферийный конец (13);
одна или несколько лопастей (8), предназначенных для индуцирования вихревого потока смеси текучей среды вдоль внутренней поверхности вихревой трубы (1) в направлении вниз по потоку от ближайшего конца (1А) в направлении к периферийному концу (13) вихревой трубы (1);
выпускной канал (4) для жидкости имеет кольцеобразную форму и расположен коаксиально между пулевидным отражательным элементом (5) и внутренней поверхностью периферийного конца (13) вихревой трубы (1);
выпускной канал (3) для газа расположен коаксиально внутри ближайшего конца (1А) вихревой трубы (1);
дополнительно содержащийся пулевидный отражательный элемент (5) имеет носовую секцию для индуцирования течения обогащенной газом фракции в режиме вихревого противотока (12) от носовой секции пулевидного отражательного элемента (5) в направлении выпускного канала (3) для газа;
при этом ближайший конец (1А) вихревой трубы (1) выполнен в виде раструба, который соединен с трубопроводом (2) для входа текучей среды таким образом, что формируется кольцеобразный канал (2С) для входа текучей среды, который коаксиально окружает стенки выпускного канала (3) для газа, причем ряд лопастей (8) расположен в канале (2С).
9. Циклонный сепаратор по п.8, в котором пулевидный отражательный элемент (5) имеет в значительной степени цилиндрическую хвостовую секцию, и периферийный конец (13) вихревой трубы (1) имеет расходящуюся форму по ходу движения потока.
10. Циклонный сепаратор по п.8, в котором выпускной канал (3) для газа расположен коаксиально вокруг торпедообразного центрального элемента (9), имеющего коническую носовую и хвостовую секции и в значительной степени цилиндрическую среднюю секцию; и блок лопастей (10) для удаления завихрения потока расположен в выпускном канале (3) для газа между наружной поверхностью центрального элемента (9) и внутренней поверхностью стенки центрального выпускного канала (3) для удаления завихрения в потоке (G) обогащенной газом фракции в выпускном канале (3) для газа.
11. Циклонный сепаратор по п.7, в котором множество обеспечивающих завихрение лопастей (8) расположено в секции (2С) кольцеобразного впускного канала для текучей среды, в котором трубопровод (2) для входа текучей среды имеет внутренний диаметр больше, чем другие участки трубопровода (2) для входа текучей среды, и имеет форму, обеспечивающую вихревой поток текучей среды с дозвуковой скоростью через кольцеобразный впускной канал (2С) для текучей среды, причем ближайший конец (1А) вихревой трубы (1) с раструбом образует кольцеобразную секцию (6) горловины, форма которой обеспечивает ускорение смеси текучей среды практически до околозвуковой или сверхзвуковой скорости.
12. Циклонный сепаратор по п.7, в котором выпускной канал (4) для дегазированной жидкости соединен с устройством гравитационного сепарирования, которое включает механические пороги ниже и выше проточных систем для разделения потоков нефти, воды и остаточного газа, которая выводится по выпускному каналу (4) для дегазированной жидкости.
Текст
Дата публикации и выдачи патента Номер заявки ЦИКЛОННЫЙ СЕПАРАТОР И СПОСОБ ДЕГАЗАЦИИ СМЕСИ ТЕКУЧЕЙ СРЕДЫ Описаны способ и циклонный сепаратор для дегазации смеси текучей среды, содержащей несущую жидкость и один или несколько газообразных и/или испаряющихся компонентов, в котором смесь текучей среды ускоряется в секции (6) горловины вихревой трубы (1) таким образом, что снижается статическое давление смеси текучей среды и испаряющиеся компоненты испаряются в газовую фазу; индуцируется вихревое движение, ускоряющее поток смеси текучей среды внутри вихревой трубы таким образом, чтобы обеспечить разделение смеси текучей среды под действием центробежных сил на дегазированную жидкостную фракцию и обогащенную газом фракцию; индуцируется течение дегазированной жидкостной фракции внутри выпускного канала (4) для жидкости, который расположен на наружной окружности вихревой трубы (1) или вблизи нее; и индуцируется течение обогащенной газом фракции внутри выпускного канала (3) для газа, который расположен по центральной оси вихревой трубы (1) или вблизи нее. Беттинг Марко, Коленбрандер Герардус Виллем (NL), Кьюроул Майкл Элвин (US), Клавер Теодорус Корнелис, Пйк Эрик Йоханнес (NL) Иванова О.Ф. (RU)(71)(73) Заявитель и патентовладелец: ШЕЛЛ ИНТЕРНЭШНЛ РИСЕРЧ МААТСХАППИЙ Б.В. (NL) 015603 Область техники, к которой относится изобретение Это изобретение относится к циклонному сепаратору и к способу дегазации смеси текучей среды. Уровень техники В патенте США 6402799 раскрыт циклонный сепаратор, в котором газожидкостную смесь вводят через тангенциальное входное отверстие в горизонтальную вихревую трубу, в которой, по меньшей мере,частично разделяются газообразная и жидкая фракции, причем жидкая фракция образует пленку вдоль внутренней стенки вихревой трубы и выводится через радиальное выпускное отверстие, в то время как газообразная фракция сосредоточивается вблизи центральной оси вихревой трубы и выводится через центральное выпускное отверстие. В международных заявках на патент WO 9901194 и WO 03029739 описаны циклонные сепараторы,в которых газовый поток ускоряется в вихревой трубе до почти звуковой или сверхзвуковой скорости и затем расширяется и адиабатически охлаждается, так что образуются частицы жидкостной или твердой фазы, которые выводятся через выпускное отверстие на наружной окружности трубы, в то время как фракция сухого газа выводится через центральное выпускное отверстие. Эти известные сепараторы имеют компоновку, обеспечивающую удаление сжиженных и/или затвердевших компонентов из потока газа, но не для удаления газообразной фракции из несущей жидкости. В патенте Великобритании 2035150; в патентах США 2811219 и 4596586 и в международной заявке на патент WO 03055575 описаны циклонные сепараторы, в которых газожидкостная смесь вводится через тангенциальное входное отверстие в вертикальную вихревую трубу, которая имеет на верхнем конце центральное выпускное отверстие для газа, через которое выводится газообразная фракция, и на нижнем конце имеется резервуар для сбора жидкости, который соединен с трубопроводом для сброса жидкости. Недостаток последней группы известных циклонных сепараторов заключается в том, что обычно они представляют собой крупногабаритное оборудование и имеют ограниченную эффективность сепарирования. В заявке на патент Германии 3715157 раскрыт циклонный сепаратор для разделения газообразных компонентов от жидкости, в котором жидкость вводится через тангенциальное входное отверстие в трубчатую камеру газожидкостного сепарирования, на одном конце которой имеется выпускное отверстие для жидкости, а на другом конце имеется выпускное отверстие для газа. Недостаток этого известного циклонного сепаратора заключается в том, что сначала на входе в камеру сепарирования жидкости придается вихревое движение, и затем она ускоряется в сходящейся секции кольцеобразной горловины,что снижает эффективность газожидкостного сепарирования. Способ и сепаратор в соответствии с преамбулой пп.1 и 9 формулы изобретения известны из международной заявки на патент WO 03/002227. В этой ссылке уровня техники описан циклонный сепаратор дегазации жидкости, в котором сначала жидкому потоку придается вихревое движение с помощью соответствующих лопастей, расположенных во входном канале, и затем вихревой жидкостной поток ускоряется в сходящейся секции горловины, в которой в значительной степени образуются жидкостная и газообразная фракции, после чего газообразная фракция выводится через центральный выпускной канал для газа, а жидкая фракция выводится через кольцеобразный выпускной канал для жидкости. Недостаток известного способа заключается в том, что сначала потоку жидкости придается вихревое движение, и затем он ускоряется в сходящейся секции горловины, что снижает эффективность газожидкостного сепарирования. Целью настоящего изобретения является разработка компактного циклонного сепаратора для дегазации смеси текучей среды и эффективного способа дегазации смеси текучей среды. Краткое изложение изобретения В соответствии с настоящим изобретением разработан способ дегазации смеси текучей среды, которая включает несущую жидкость и один или несколько газообразных и/или испаряющихся компонентов, в циклонном сепараторе, в котором поток смеси текучая среды ускоряется в секции горловины вихревой трубы таким образом, что снижается статическое давление смеси текучей среды, и испаряющиеся компоненты испаряются в газообразную фазу; потоку смеси текучей среды придается вихревое движение в вихревой трубе так, чтобы поток смеси текучей среды под действием центробежных сил разделялся на поток дегазированной жидкостной фракции и поток обогащенной газом фракции; индуцируется течение дегазированной жидкостной фракции в выпускной канал для жидкости, который расположен на наружной окружности вихревой трубы или вблизи нее; и индуцируется течение обогащенной газом фракции в выпускной канал, который расположен по центральной оси вихревой трубы или вблизи нее; где смесь текучей среды сначала ускоряется в секции горловины и затем индуцируется вихревое течение ускоренной смеси текучей среды внутри вихревой трубы. В предпочтительном варианте осуществления способа согласно изобретению индуцируется вихревое течение дегазированной жидкости вдоль внутренней поверхности вихревой трубы в направлении вниз по потоку от ближайшего конца к периферийному концу вихревой трубы и-1 015603 выводится через кольцеобразный выпускной канал для жидкости, который расположен коаксиально между пулевидным отражательным элементом и внутренней поверхностью периферийного конца вихревой трубы; индуцируется течение обогащенной газом фракции в режиме вихревого противотока от носовой секции пулевидного отражательного элемента в направлении канала выпускного отверстия для газа, который расположен коаксиально внутри ближайшего конца вихревой трубы; и вихревая труба имеет раструб, ближайший конец которого соединен с входным трубопроводом для смеси текучей среды таким образом, что формируется кольцеобразный входной канал для смеси текучей среды, который коаксиально окружает стенки выпускного канала для газа, причем в этом канале текучей среды смесь ускоряется с помощью расположенных в нем лопастей, сообщающих вихревое движение потоку, при этом индуцируется вихревое движение ускоренного потока смеси текучей среды внутри вихревой трубы. Выпускной канал для газа может иметь кольцеобразный вход, который играет роль искателя вихря при движении потока обогащенной газом фракции в режиме вихревого противотока вокруг центральной оси вихревой трубы, причем этот режим вихревого противотока индуцируется на кромке носовой секции пулевидного отражательного элемента за счет эффекта Ранка-Хилза. Этот пулевидный отражательный элемент может иметь коническую носовую секцию и в значительной степени цилиндрическую хвостовую секцию, причем периферийный конец вихревой трубы может иметь форму раструба, расходящегося в направлении вниз по потоку. Выпускной канал для газа может быть расположен коаксиально вокруг торпедообразного центрального элемента, имеющего коническую форму носа и хвоста и в значительной степени цилиндрическую среднюю секцию; и поток обогащенной газом фракции в выпускном канале для газа может быть стабилизирован с помощью блока лопастей, устраняющего завихрения, который расположен в выпускном канале для газа, между наружной поверхностью центрального элемента и внутренней поверхностью стенки выпускного канала для газа. Лопасти, обеспечивающие вихревое движение потоку, необязательно расположены в секции кольцеобразного входного канала для текучей среды, в которой входной трубопровод для текучей среды имеет внутренний диаметр больше, чем другие секции входного трубопровода для текучей среды, причем эти лопасти индуцируют сверхзвуковой поток смеси текучей среды через входной кольцевой канал для текучей среды, и смесь текучей среды ускоряется в значительной степени до околозвуковой или сверхзвуковой скорости в ближайшем конце вихревой трубы, имеющей раструб. Способ согласно изобретению может быть реализован для дегазации текучей смеси, которая включает в себя сырую нефть в качестве жидкости, несущей газообразные и/или испаряющиеся компоненты,содержащие природный газ и/или конденсаты, такие как метан, этан, пропан, бутан и пентан, диоксид углерода и/или сероводород. Согласно изобретению циклонный сепаратор для дегазации смеси текучей среды, включающей несущую жидкость и один или несколько газообразных и/или испаряющихся компонентов, содержит вихревую трубу, имеющую секцию горловины, в которой текучая смесь ускоряется таким образом,что статическое давление текучей смеси снижается и испаряющиеся компоненты испаряются в газовую фазу; одну или несколько лопастей, сообщающих вихревое движение потоку текучей смеси внутри вихревой трубы таким образом, что индуцируется разделение смеси за счет центробежных сил на дегазированную жидкую фракцию и обогащенную газом фракцию; выпускной канал для дегазированной жидкости, который расположен на наружной окружности вихревой трубы или вблизи нее, для выливания дегазированной жидкой фракции и выпускной канал для газа, который расположен по центральной оси вихревой трубы или вблизи нее, для выпуска обогащенной газом фракции; где одна или несколько лопастей, сообщающих вихревое движение потоку, расположены ниже секции горловины, по ходу потока, в которой ускоряется смесь текучей среды, содержащая несущую жидкость и один или несколько испаряющихся компонентов. Эти и другие признаки и варианты осуществления способа и циклонного сепаратора согласно изобретению описаны в прилагаемой формуле изобретения, реферате и в следующем ниже подробном описании, в котором сделаны ссылки на сопровождающие чертежи. Краткое описание чертежей На фиг. 1 схематически изображено продольное сечение первого варианта осуществления циклонного сепаратора для дегазации жидкости согласно изобретению, в котором смесь текучей среды подвергается дегазации и разделению, причем разделенные потоки L и G дегазированной жидкая фракции и газообразной фракции, соответственно, выводятся с противоположных концов сепаратора. На фиг. 2 схематически изображено продольное сечение второго варианта осуществления циклонного сепаратора для дегазации жидкости согласно изобретению, в котором текучая смесь подвергается дегазации и разделению, причем разделенные потоки L и G дегазированной жидкостной фракции и газообразной фракции, соответственно, выводятся с одного и того же конца сепаратора.-2 015603 На фиг. 3 показаны ожидаемые режимы потока и значения давления в различных зонах циклонного сепаратора для дегазации жидкости. Подробное описание вариантов осуществления изобретения На фиг. 1 изображен циклонный сепаратор для дегазации жидкости, который содержит вихревую трубу 1, трубопровод 2 для входа необработанной текучей среды, выпускной канал 3 для газа и выпускной канал 4 для дегазированной жидкости. Вихревая труба 1 имеет раструб в ближайшем конце 1 А и расходящийся периферийный конец 13. Выпускной канал 4 для жидкости образуется за счет кольцеобразного пространства между внутренней поверхностью рассеивающего периферийного конца 13 вихревой трубы 1 и пулевидного отражательного элемента 5. Ближайший конец 1 А вихревой трубы 1 в форме раструба соединен с расходящейся наружной стенкой 2 В входного канала 2 для текучей среды. Ряд лопастей 8, сообщающих вихревое движение потоку, расположен в расходящемся кольцеобразном конце секции 2 С входного канала 2 В, причем лопасти 8 индуцируют вихревое движение потока необработанной текучей среды в кольцеобразной секции 6 горловины, образовавшейся между внутренней поверхностью ближайшего конца 1 А вихревой трубы 1 в виде раструба и наружной поверхностью стенки 3 А выпускного канала 3 для текучей среды. Кольцеобразная секция 6 горловины имеет постепенно уменьшающееся поперечное сечение и таким образом действует в качестве так называемого сопла Лаваля, в котором жидкость ускоряется до дозвуковой или предпочтительно до околозвуковой или сверхзвуковой скорости. В ускоренном потоке смеси текучей среды будет расширяться, и статическое давление будет падать таким образом, что растворенный газ или свободная фракция газа в несущей жидкости будет испаряться, и поток жидкости превратится в аэрированный поток L+G несущей жидкости и пузырьков газа. Одновременно лопасти 8 сообщают вихревое движение аэрированному потоку L+G, который усиливается за счет постепенного уменьшения наружного диаметра кольцеобразной секции 6 горловины, в результате сохранения момента количества движения, который также известен как эффект вращающегося конькобежца. Это вихревое движение может сообщить аэрированному потоку L+G центробежные силы порядка 100000 g, что вызывает миграцию пузырьков газа G с низкой плотностью в направлении центральной оси 7 вихревой трубы 1 и миграцию жидкой фракции L с высокой плотностью в направлении наружной поверхности вихревой трубы 1. Жидкая фракция L с высокой плотностью будет вращаться в виде кольцеобразной пленки 11 вдоль внутренней поверхности вихревой трубы 1 внутри выпускного канала 3 для газа. Пузырьки газа G будут сливаться, образуя непрерывную газовую фазу вблизи центральной оси 7 вихревой трубы 1, причем эта газовая фаза будет сталкиваться с остроконечной носовой секцией 5 А пулевидного отражательного элемента 5; затем она отражается и под действием явления Ранка-Хилза течет в виде противоточного вихря 12 от остроконечной носовой секции 5 А в направлении от периферийного конца 1B к ближайшему концу 1 А вихревой трубы 1 в выпускной канал 3 для газа. Кольцеобразный коаксиальный вход 3 В выпускного канала 3 для среды будет играть роль источника вихря в газообразном потоке G. Торпедообразный центральный элемент, расположенный внутри выпускного канала 3 для газа, и ряд лопастей, устраняющих завихрения, будут стабилизировать газообразный поток G и направлять его внутрь указанного канала 3. Пулевидный отражательный элемент 5 может перемещаться вдоль оси внутри рассеивающего периферийного конца 1 В вихревой трубы, как показано стрелкой 15, таким образом, можно регулировать ширину кольцеобразного выпускного канала 4 для жидкости и скорость потока L дегазированной жидкости. На фиг. 2 изображен альтернативный вариант осуществления циклонного сепаратора для дегазации жидкости, который содержит вихревую трубу 20, имеющую секцию суженной горловины 21, в которой поток текучей смеси несущей жидкости и растворенных газообразных и/или испаряющихся компонентов ускоряется до околозвуковой или сверхзвуковой скорости и закручивается с помощью одной или нескольких лопастей 22, сообщающих вихревое движение потоку с тем, чтобы испаряющиеся компоненты испарились, а поток L жидкой фракции с высокой плотностью отделился от потока G газообразной фракции с низкой плотностью под действием центробежных сил. Жидкая фракция с высокой плотностью может образовать вихревую кольцеобразную пленку вдоль внутренней поверхности вихревой трубы 20,которая выводится из вихревой трубы 20 через кольцеобразный выпускной канал 23, который формируется между внутренней поверхностью периферийного конца 20 В вихревой трубы 20 и наружной поверхностью стенки 24 центрального выпускного канала 25 для газа, через который выводится поток G газообразной фракции. В устройстве гравитационного сепарирования газа и жидкости (не показано), которое содержит механические пороги ниже и выше проточных систем, могут быть разделены три фазы: нефти, воды и остаточного газа, который выводится по кольцеобразному выпускному каналу 23. Давление газа выравнивает давление между этими тремя фазами, и различия удельного веса обеспечивают разность уровней для сепарирования смесей газ/жидкость и нефть/вода. За счет различной высоты порогов одна из фаз улавливается выше порога, а другая фаза может проходить под порогом и над ним. На фиг. 3 схематически показаны режимы потока текучей среды и снижение статического давления-3 015603 в циклонном сепараторе для дегазации жидкости согласно изобретению. Продемонстрировано, как в сепараторе, изображенном на фиг. 1, жидкостной поток трансформируется в тонко аэрированный поток внутри секции 6 горловины и разделяется на кольцеобразный вихревой поток L жидкой фракции и центральный противоток G вихревой газообразной фракции. Давление введенной жидкой смеси может составлять около 100 бар, а давление выведенной в выпускной канал 3 газообразной фракции может составлять около 30 бар. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ дегазации смеси текучей среды в циклонном сепараторе, в котором сырая нефть используется в качестве несущей жидкости, а один или несколько газообразных и/или испаряющихся компонентов содержат природный газ и/или конденсаты, такие как метан, этан, пропан, бутан и пентан, диоксид углерода и/или сероводород, в котором поток смеси текучей среды ускоряют в секции (6) горловины вихревой трубы (1) таким образом,что снижается статическое давление смеси текучей среды, и испаряющиеся компоненты испаряются в газообразную фазу; потоку смеси текучей среды придают вихревое движение в вихревой трубе (1) так, чтобы поток смеси текучей среды под действием центробежных сил разделился на поток (L) дегазированной жидкостной фракции и поток (G) обогащенной газом фракции; индуцируют течение дегазированной жидкостной фракции в выпускной канал (4, 23) для жидкости,который расположен на наружной окружности вихревой трубы (1) или вблизи нее; и индуцируют течение обогащенной газом фракции в выпускной канал (3) для газа, который расположен по центральной оси (7) вихревой трубы (1) или вблизи нее; отличающийся тем, что потоку смеси текучей среды придают вихревое движение посредством лопастей (8), обеспечивающих вихревое движение необработанной среды в кольцеобразной секции (6) горловины, образованной между внутренней поверхностью раструба ближайшего конца (1 А) вихревой трубы (1) и наружной поверхностью стенки (3 А) выпускного канала (3) для газа. 2. Способ по п.1, в котором индуцируют вихревое течение дегазированной жидкости вдоль внутренней поверхности вихревой трубы (1) в направлении вниз по потоку от ближайшего конца (1 А) в направлении к периферийному концу (13) вихревой трубы (1) и выводят через кольцеобразный выпускной канал (4) для жидкости, который расположен коаксиально между пулевидным отражательным элементом (5) и внутренней поверхностью периферийного конца (13) вихревой трубы (1); индуцируют течение обогащенной газом фракции в режиме вихревого противотока от носовой секции пулевидного отражательного элемента (5) в направлении выпускного отверстия канала (3) для газа,который расположен коаксиально внутри ближайшего конца (1 А) вихревой трубы (1); и ближайший конец (1 А) вихревой трубы (1) имеет раструб, который соединен с входным трубопроводом (2) для смеси текучей среды таким образом, чтобы сформировался кольцеобразный канал (2 С) для входа смеси текучей среды, который коаксиально окружает стенки выпускного канала (3) для газа, причем в этом канале (2 С) расположен ряд лопастей (8), обеспечивающих завихрение, что индуцирует ускоренный поток смеси текучей среды в вихревом режиме внутри вихревой трубы (1). 3. Способ по п.2, в котором пулевидный отражательный элемент (5) имеет коническую носовую часть и в значительной степени цилиндрическую хвостовую секцию и периферийный конец (13) вихревой трубы (1) имеет расходящуюся форму в направлении вниз по потоку. 4. Способ по п.2, в котором выпускной канал (3) для газа расположен коаксиально вокруг торпедообразного центрального элемента (9), имеющего секции конического носа и хвоста и в значительной степени цилиндрическую среднюю секцию; и обогащенную газом фракцию в выпускном канале (3) для газа стабилизируют с помощью блока (10) лопастей, удаляющих завихрения, который расположен в выпускном отверстии канала (3) для газа, между наружной поверхностью центрального элемента (9) и внутренней поверхностью стенки центрального канала выпускного канала (3) для газа. 5. Способ по п.4, в котором выпускной канал (3) для газа имеет кольцеобразный вход (3 В), который играет роль искателя вихря при движении потока обогащенной газом фракции в режиме вихревого противотока (12) вокруг центральной оси (7) вихревой трубы (1), причем этот режим вихревого противотока(12) индуцируется на кромке носовой секции пулевидного отражательного элемента (5) за счет эффекта Ранка-Хилза. 6. Способ по п.2, в котором обеспечивающие завихрение лопасти (8) расположены в секции кольцеобразного впускного канала (2 С) для входа текучей среды, в котором входной трубопровод для текучей среды имеет внутренний диаметр больше, чем другие участки трубопровода для входа текучей среды,причем лопасти (8) индуцируют течение потока смеси с дозвуковой скоростью через кольцеобразный впускной канал (2 С) для входа текучей среды, и смесь текучей среды ускоряется в значительной степени до околозвуковой или сверхзвуковой скорости в ближайшем конце (1 А) вихревой трубы (1) в форме рас-4 015603 труба. 7. Циклонный сепаратор для осуществления способа по пп.1-6, который содержит вихревую трубу (1), имеющую секцию (6) горловины, в которой смесь текучей среды ускоряется таким образом, что снижается статическое давление смеси текучей среды и испаряющиеся компоненты испаряются в газовую фазу; одну или несколько сообщающих вихревое движение потоку лопастей (8) для индуцирования вихревого потока смеси текучей среды внутри вихревой трубы (1), таким образом обеспечивается разделение смеси под действием центробежных сил на поток (L) дегазированной жидкостной фракции и поток(G) обогащенной газом фракции; выпускной канал (4) для дегазированной жидкости, который расположен на наружной окружности вихревой трубы (1) или вблизи нее, для выпуска дегазированной жидкой фракции; и выпускной канал (3) для газа, который расположен по центральной оси (7) вихревой трубы (1) или вблизи нее, для выпуска обогащенной газом фракции; отличающийся тем, что одна или несколько лопастей (8), сообщающих вихревое движение потоку,расположены в кольцеобразной секции (6) горловины, образованной между внутренней поверхностью раструба ближайшего конца (1 А) вихревой трубы (1) и наружной поверхностью стенки (3 А) выпускного канала (3) текучей среды, и сообщают потоку необработанной текучей среды вихревое движение в кольцеобразной секции (6) горловины. 8. Циклонный сепаратор по п.7, в котором вихревая труба (1) включает ближайший конец (1 А) и периферийный конец (13); одна или несколько лопастей (8), предназначенных для индуцирования вихревого потока смеси текучей среды вдоль внутренней поверхности вихревой трубы (1) в направлении вниз по потоку от ближайшего конца (1 А) в направлении к периферийному концу (13) вихревой трубы (1); выпускной канал (4) для жидкости имеет кольцеобразную форму и расположен коаксиально между пулевидным отражательным элементом (5) и внутренней поверхностью периферийного конца (13) вихревой трубы (1); выпускной канал (3) для газа расположен коаксиально внутри ближайшего конца (1 А) вихревой трубы (1); дополнительно содержащийся пулевидный отражательный элемент (5) имеет носовую секцию для индуцирования течения обогащенной газом фракции в режиме вихревого противотока (12) от носовой секции пулевидного отражательного элемента (5) в направлении выпускного канала (3) для газа; при этом ближайший конец (1 А) вихревой трубы (1) выполнен в виде раструба, который соединен с трубопроводом (2) для входа текучей среды таким образом, что формируется кольцеобразный канал (2 С) для входа текучей среды, который коаксиально окружает стенки выпускного канала (3) для газа, причем ряд лопастей (8) расположен в канале (2 С). 9. Циклонный сепаратор по п.8, в котором пулевидный отражательный элемент (5) имеет в значительной степени цилиндрическую хвостовую секцию, и периферийный конец (13) вихревой трубы (1) имеет расходящуюся форму по ходу движения потока. 10. Циклонный сепаратор по п.8, в котором выпускной канал (3) для газа расположен коаксиально вокруг торпедообразного центрального элемента (9), имеющего коническую носовую и хвостовую секции и в значительной степени цилиндрическую среднюю секцию; и блок лопастей (10) для удаления завихрения потока расположен в выпускном канале (3) для газа между наружной поверхностью центрального элемента (9) и внутренней поверхностью стенки центрального выпускного канала (3) для удаления завихрения в потоке (G) обогащенной газом фракции в выпускном канале (3) для газа. 11. Циклонный сепаратор по п.7, в котором множество обеспечивающих завихрение лопастей (8) расположено в секции (2 С) кольцеобразного впускного канала для текучей среды, в котором трубопровод (2) для входа текучей среды имеет внутренний диаметр больше, чем другие участки трубопровода (2) для входа текучей среды, и имеет форму, обеспечивающую вихревой поток текучей среды с дозвуковой скоростью через кольцеобразный впускной канал (2 С) для текучей среды, причем ближайший конец (1 А) вихревой трубы (1) с раструбом образует кольцеобразную секцию (6) горловины, форма которой обеспечивает ускорение смеси текучей среды практически до околозвуковой или сверхзвуковой скорости. 12. Циклонный сепаратор по п.7, в котором выпускной канал (4) для дегазированной жидкости соединен с устройством гравитационного сепарирования, которое включает механические пороги ниже и выше проточных систем для разделения потоков нефти, воды и остаточного газа, которая выводится по выпускному каналу (4) для дегазированной жидкости.
МПК / Метки
МПК: B04C 3/00, B04C 5/13, B04C 5/181, B04C 5/16, B04C 3/06, B04C 5/103, B01D 19/00
Метки: способ, циклонный, текучей, среды, смеси, сепаратор, дегазации
Код ссылки
<a href="https://eas.patents.su/7-15603-ciklonnyjj-separator-i-sposob-degazacii-smesi-tekuchejj-sredy.html" rel="bookmark" title="База патентов Евразийского Союза">Циклонный сепаратор и способ дегазации смеси текучей среды</a>
Предыдущий патент: Система крепления рельса и крепление рельса на основании
Следующий патент: Прозрачная легко отрываемая пленка, способ ее изготовления (варианты), применение композиции для изготовления пленки и применение пленки
Случайный патент: Система демонстрации изображений