Определение оптимальных характеристик пластового резервуара, буровой скважины и наземных распределительных сетей

Номер патента: 5604

Опубликовано: 28.04.2005

Авторы: Флинн Джеймс Дж., Росси Дейвид Дж.

Скачать PDF файл.

Формула / Реферат

1. Способ непрерывного определения оптимальных характеристик пластового резервуара буровой скважины и наземных распределительных сетей, предусматривающий следующие стадии:

(a) передача входного воздействия, имеющего заданную сигнатуру, вниз по скважине в стволе буровой скважины и управление скважинным аппаратом, выполненным с возможностью размещения в указанном стволе буровой скважины;

(b) непрерывный текущий контроль фактической характеристики текучей среды ствола буровой скважины, протекающей в насосно-компрессорной колонне указанного скважинного аппарата, в ответ на передачу входного воздействия и генерирование фактических сигналов, представляющих указанную фактическую характеристику указанной текучей среды ствола буровой скважины;

(c) прогнозирование целевой характеристики указанной текучей среды ствола буровой скважины, протекающей в указанной насосно-компрессорной колонне, и генерирование целевых сигналов, представляющих указанную целевую характеристику указанной текучей среды ствола буровой скважины;

(d) сравнение указанных фактических сигналов с указанными целевыми сигналами и выполнение процесса текущего контроля и управления, если указанные фактические сигналы не являются приблизительно равными указанным целевым сигналам;

(e) изменение заданной сигнатуры указанного входного воздействия в ответ на выполнение предыдущей стадии, генерируя в соответствии с этим второе входное воздействие, имеющее вторую заданную сигнатуру; и

(f) повторение стадий (a)-(e), используя указанное второе входное воздействие, и непрерывное изменение заданной сигнатуры входного воздействия до тех пор, пока указанные фактические сигналы не станут приблизительно равными указанным целевым сигналам.

2. Способ по п.1, отличающийся тем, что прогнозирование целевой характеристики указанной текучей среды на стадии (c) предусматривает стадию (c1) генерирования второго целевого сигнала, представляющего указанную целевую характеристику указанной текучей среды ствола буровой скважины, если после повторения стадии (f) указанные фактические сигналы не становятся приблизительно равными указанным целевым сигналам.

3. Устройство, выполненное с возможностью непрерывного определения оптимальных характеристик пластового резервуара буровой скважины и наземных распределительных сетей, содержащее

первое средство для передачи входного воздействия, имеющего заданную сигнатуру, вниз по скважине в стволе буровой скважины и для управления скважинным аппаратом, выполненным с возможностью размещения в указанном стволе буровой скважины;

второе средство для непрерывного текущего контроля фактической характеристики текучей среды ствола буровой скважины, протекающей в насосно-компрессорной колонне указанного скважинного аппарата, в ответ на передачу указанным первым средством входного воздействия и генерирования фактических сигналов, представляющих указанную фактическую характеристику указанной текучей среды ствола буровой скважины;

третье средство для прогнозирования целевой характеристики указанной текучей среды ствола буровой скважины, протекающей в указанной насосно-компрессорной колонне, и генерирования целевых сигналов, представляющих указанную целевую характеристику указанной текучей среды ствола буровой скважины;

четвертое средство для сравнения указанных фактических сигналов с указанными целевыми сигналами и выполнения процесса текущего контроля и управления, если указанные фактические сигналы не являются приблизительно равными указанным целевым сигналам, причем указанное четвертое средство изменяет заданную сигнатуру указанного входного воздействия, если выполнение указанного процесса текущего контроля и управления завершено, и генерирует второе входное воздействие, имеющее вторую заданную сигнатуру, причем

указанное первое средство передает второе входное воздействие, имеющее указанную вторую заданную сигнатуру, вниз по скважине в стволе буровой скважины и управляет указанным скважинным аппаратом,

указанное второе средство осуществляет непрерывный контроль указанной фактической характеристики указанной текучей среды ствола буровой скважины, протекающей в насосно-компрессорной колонне, и генерирует дополнительные фактические сигналы, представляющие указанную фактическую характеристику указанной текучей среды ствола буровой скважины,

указанное третье средство генерирует указанные целевые сигналы, представляющие указанную целевую характеристику указанной текучей среды ствола буровой скважины, а

указанное четвертое средство сравнивает указанные дополнительные фактические сигналы с указанными целевыми сигналами и непрерывно повторно выполняет указанный процесс текущего контроля и управления до тех пор, пока указанные фактические сигналы не станут приблизительно равными указанным целевым сигналам.

4. Устройство по п.3, отличающееся тем, что указанное третье средство генерирует дополнительные целевые сигналы, представляющие указанную целевую характеристику указанной текучей среды ствола буровой скважины, если указанные фактические сигналы не являются приблизительно равными указанным целевым сигналам, причем указанное четвертое средство сравнивает указанные дополнительные фактические сигналы с указанными дополнительными целевыми сигналами и непрерывно повторно выполняет указанный процесс текущего контроля и управления до тех пор, пока указанные дополнительные фактические сигналы не станут приблизительно равными указанным дополнительным целевым сигналам.

Рисунок 1

 

Текст

Смотреть все

005604 Предпосылки для создания настоящего изобретения Предмет настоящего изобретения относится к способу, который может быть реализован и осуществлен на практике в вычислительном устройстве для преобразования данных текущего контроля, которые могут содержать данные текущего контроля в реальном масштабе времени или не в реальном масштабе времени, при принятии решения в определении оптимальных характеристик нефтяного и/или газового пластового резервуара, как правило, путем открывания или закрывания скважинных интеллектуальных(программируемых) регулирующих клапанов (ICV). В нефтяной и газовой промышленности скважинные интеллектуальные регулирующие клапаны монтируют в буровых скважинах для регулирования скорости потока текучей среды в отдельные пластовые резервуары или из отдельных пластовых резервуаров. Скважинные интеллектуальные регулирующие клапаны (ICV) описаны, например, Дж. Алджерой и др. "Управление пластовыми резервуарами издалека", The Oilfield Review (1999), 11 (3), стр. 18-29. В буровых скважинах также часто монтируют различные типы измерительной аппаратуры текущего контроля, например, манометры и расходомеры многофазных потоков, описанные в А. Бейкер и др. "Постоянный текущий контроль - наблюдение динамики пластового резервуара в течение срока службы", The Oilfield Review (1995), 7(4), стр. 32-46, и А. Бимер и др. "От скважин до трубопровода, решения промыслового масштаба", The Oilfield Review (1998), 10 (2),стр. 2-19. В этой заявке описан способ преобразования данных текущего контроля (данных текущего контроля в реальном масштабе времени или не в реальном масштабе времени) при решении в отношении определения оптимальных характеристик нефтяного или газового пластового резервуара, как правило,путем открывания или закрывания скважинных интеллектуальных регулирующих клапанов в нефтяном или газовом пластовом резервуаре. Краткое изложение сущности настоящего изобретения Соответственно, процесс "текущего контроля и управления" осуществляют на практике в аппарате для текущего контроля и управления, который расположен в устье буровой скважины в вычислительном устройстве, которое расположено на поверхности буровой скважины, и в скважине в вычислительном устройстве, расположенном в буровой скважине. Часть аппарата текущего контроля и управления, которая расположена в устье буровой скважины (ниже называемая в этой заявке "устьевая часть аппарата текущего контроля и управления"), ответственна за множество данных текущего контроля, причем данные текущего контроля принимают из той части аппарата для текущего контроля и управления, которая расположена в скважине и называемой ниже в этой заявке "скважинной частью аппарата текущего контроля и управления". "Скважинная часть аппарата текущего контроля" фактически состоит из "испытательной системы буровой скважины", которая расположена в стволе буровой скважины. Функциями"устьевой части аппарата текущего контроля и управления" являются избирательные изменения положения интеллектуального регулирующего клапана, который расположен в "скважинной части аппарата текущего контроля и управления", причем положение интеллектуального регулирующего клапана в скважинном аппарате изменяют между открытым и закрытым положениями для поддержания "фактического" совокупного объема воды, который выпускают из слоя пластового резервуара в ствол скважины (или нагнетают в слой пластового резервуара), приблизительно равным "целевому" совокупному объему воды(то есть целевому значению), который желателен для выпуска из слоя пластового резервуара в ствол скважины (или нагнетания в слой пластового резервуара). Программа моделирования, реализованная в отдельном компьютере автоматизированного рабочего места, моделирует слой пластового резервуара и прогнозирует "целевой" совокупный объем воды (или текучей среды пластового резервуара), который будет выпускаться из слоя пластового резервуара (или будет нагнетаться в слой пластового резервуара). Открытое или закрытое положение интеллектуального регулирующего клапана (ICV) в "скважинной части аппарата текущего контроля и управления" должно быть изменено особым образом, особым способом и с особой скоростью для того, чтобы гарантировать то, что "фактический" совокупный объем воды (или другой текучей среды пластового резервуара), который выпускается из слоя пластового резервуара (или нагнетается в слой пластового резервуара), приблизительно равен "целевому" совокупному объему воды (или другой текучей среды пластового резервуара), который прогнозируется для выпуска из слоя пластового резервуара (или прогнозируется для нагнетания в слой пластового резервуара). Это является функцией "устьевой части аппарата для текущего контроля и управления" изменять открытое и закрытое положение интеллектуального регулирующего клапана скважинного аппарата особым образом и особым способом и с особой скоростью для того, чтобы гарантировать то, что "фактический" совокупный объем воды (или другой текучей среды пластового резервуара), которую выпускают из слоя пластового резервуара (или нагнетают в слой пластового резервуара), приблизительно равен "целевому" совокупному объему воды (или другой текучей среды пластового резервуара), который прогнозируется для выпуска из слоя пластового резервуара (или прогнозируется для нагнетания в слой пластового резервуара). Если положение интеллектуального регулирующего клапана скважинного аппарата не может быть изменено устьевым аппаратом особым образом, особым способом и с особой скоростью для того, чтобы гарантировать то, что "фактический" совокупный объем воды или текучей среды приблизительно равен "целевому" совокупному объему воды или текучей среды, то значение величины "целевого" совокупного объема воды или текучей среды, которое прогнозиру-1 005604 ется программой моделирования, которая реализована в отдельном компьютере автоматизированного рабочего места, должно быть изменено (называемое ниже в этой заявке "измененным целевым" совокупным объемом воды или текучей среды) После этого, как только это изменение "целевого" значения имело место, указанный выше процесс повторяют; однако теперь "целевой" совокупный объем воды или текучей среды равен "измененному целевому" совокупному объему воды или текучей среды. Дополнительный объем применимости настоящего изобретения станет очевидным из подробного описания, которое приведено ниже. Однако должно быть очевидным, что подробное описание и характерные примеры, хотя и представляют предпочтительный вариант осуществления настоящего изобретения, приведены только для иллюстрации, поскольку различные изменения и модификации, находящиеся в пределах сущности и объема настоящего изобретения, станут очевидными квалифицированному специалисту в этой области техники после ознакомления со следующим подробным описанием. Краткое описание чертежей Полное понимание настоящего изобретение будет получено из подробного описания предпочтительного варианта осуществления, приведенного ниже, сделанного со ссылкой на сопроводительные чертежи, которые даны только для иллюстрации и не предназначены для ограничения настоящего изобретения, на которых показаны фиг. 1-11 - кривые, отображающие зависимость совокупного зонального нагнетания от времени (в неделях); фиг. 12 - процесс текущего контроля и управления, соответствующий настоящему изобретению; фиг. 13 - часть медленной прогнозирующей модели процесса текущего контроля и управления, иллюстрируемого на фиг. 12; фиг. 14 - часть быстрой промысловой модели процесса текущего контроля и управления, иллюстрируемого на фиг. 12; фиг. 15-17 - пример интеллектуального регулирующего клапана (ICV), который может быть расположен в испытательной системе буровой скважины, которая выполнена с возможностью размещения в стволе буровой скважины; и фиг. 18 и 19 - система, предусматривающая использование процесса текущего контроля и управления, соответствующего настоящему изобретению, приспособленная для изменения положения интеллектуального регулирующего клапана (ICV) в ответ на выходные сигналы, принимаемые от одного или более датчиков текущего контроля, и осуществление процесса текущего контроля и управления, соответствующего настоящему изобретению. Подробное описание предпочтительного варианта осуществления настоящего изобретения На фиг. 15-19 приведены иллюстрации примера системы, содержащей интеллектуальный регулирующий клапан (ICV), расположенный в испытательной системе буровой скважины и выполненный с возможностью размещения в стволе буровой скважины. На фиг. 15 приведена иллюстрация испытательной системы 10 буровой скважины. Испытательная система 10 буровой скважины, иллюстрируемая на фиг. 15, описана в патентах США 4796699,4915168, 4896722 и 4856595, выданных Апчарчу, описания которых включены в описание этой заявки в качестве ссылки. Испытательная система 10 буровой скважины содержит интеллектуальный регулирующий клапан (ICV) 12, который действует в ответ на множество интеллектуальных управляющих импульсов 18, которые предаются в скважину с поверхности. На фиг. 16 иллюстрируется множество управляющих импульсов 18. Каждый импульс 18 или пара импульсов 18, имеет уникальную "сигнатуру" (характеристику), причем "сигнатура" состоит из заданной длительности импульса, и/или заданной амплитуды, и/или заданного времени нарастания, которые могут быть отрегулированы/изменены, изменяя в соответствии с этим "сигнатуру" для управления интеллектуальным регулирующим клапаном 12, иллюстрируемым на фиг. 15. Как иллюстрируется на фиг. 17, интеллектуальный управляющий клапан 12, иллюстрируемый на фиг. 15, содержит командный датчик 14, выполненный с возможностью приема управляющих импульсов 18, иллюстрируемых на фиг. 16, а командная приемная плата 16 принимает выходные сигналы от командного датчика 14 и генерирует сигналы, которые поддаются считыванию платой 20 контроллера. Плата 20 контроллера содержит, по меньшей мере, один микропроцессор. Микропроцессор хранит машинную программу, которая может быть выполнена процессором микропроцессора. Одним примером машинной программы является машинная программа, описанная в патенте США 4896722, выданном Апчарчу, описание которого включено в эту заявку в качестве ссылки. В ответ на управляющие импульсы 18, которые имеют "заданную сигнатуру", которые принимаются командным датчиком 14, микропроцессор на плате 20 контроллера интерпретирует/декодирует эту "заданную сигнатуру" (которая содержит длительность импульса, и/или заданную амплитуду, и/или заданное время нарастания управляющих импульсов 18) и чувствительна к ней, микропроцессор на плате 20 контроллера ищет собственное запоминающее устройство для "особой машинной программы", имеющей "особую сигнатуру", которая соответствует "заданной сигнатуре" или согласуется с "заданной сигнатурой" управляющих импульсов 18. Если"особая сигнатура", хранимая в запоминающем устройстве микропроцессора, найдена и она соответствует "заданной сигнатуре", то "особая машинная программа", которая соответствует "особой сигнатуре",-2 005604 выполняется процессором микропроцессора. Как результат выполнения "особой машинной программы" процессором, микропроцессор, расположенный на плате 20 контроллера, возбуждает плату 22 соленоидного привода, которая, в свою очередь, открывает и закрывает затвор (SV1 и SV2) 12 А интеллектуального регулирующего клапана 12, иллюстрируемого на фиг. 15. Эта операция достаточно хорошо описана в патентах США 4796699, 4915168, 4896722 и 4856595, выданных Апчарчу, описания которых уже были включены в описание этой заявки в качестве ссылки. На фиг. 18 иллюстрируется простая испытательная система буровой скважины, содержащая интеллектуальный регулирующий клапан (ICV). Как показано на фиг. 18, управляющие импульсы 18, иллюстрируемые на фиг. 16 и имеющие "заданную сигнатуру", передают вниз по скважине к интеллектуальному регулирующему клапану (ICV) 12. В ответ на это затвор 12 А, относящийся к интеллектуальному регулирующему клапану 12, открывается и/или закрывается "заданным способом", когда микропроцессор,расположенный на плате 20 контроллера (иллюстрируемый на фиг. 17) интеллектуального регулирующего клапана 12, выполняет "особую машинную программу", записанную в нем, так как описано выше со ссылкой на фиг. 15, 16 и 17. Текучая среда ствола буровой скважины протекает в насоснокомпрессорной колонне, испытательной системы буровой скважины. После того как текучая среда ствола буровой скважины потечет внутри насосно-компрессорной колонны один или более датчиков 24 текущего контроля начинают измерять и осуществлять текущий контроль давления, скорости потока текущей среды и другие данные, касающиеся текучей среды ствола буровой скважины, протекающей внутри насосно-компрессорной колонны. Датчики 24 текущего контроля начинают передавать сигналы 24 А данных текущего контроля вверх к устью буровой скважины. Как показано на фиг. 18, "заданная сигнатура" управляющих импульсов 18 может быть изменена. Если "заданную сигнатуру" управляющих импульсов 18 изменяют на "другую заданную сигнатуру" и если указанную "другую заданную сигнатуру" нового набора управляющих импульсов 18 передают вниз по скважине к интеллектуальному регулирующему клапану 12, то затвор 12 А интеллектуального регулирующего клапана 12 теперь будет открываться и/или закрываться "другим заданным способом", который отличается от предварительно описанного "заданного способа", связанного с вышеуказанной "заданной сигнатурой" управляющих импульсов 18. Каждый раз, когда "заданная сигнатура" управляющих импульсов 18 изменяется и передается вниз по стволу буровой скважины, затвор 12 А интеллектуального регулирующего клапана 12 может открываться и/или закрываться разным "заданным способом" и, как результат, давление и скорость потока текучей среды ствола буровой скважины, проходящего в насоснокомпрессорной колонне, иллюстрируемой на фиг. 18, будут соответственно изменяться и как результат датчики 24 текущего контроля будут измерять это измененное давление и скорость потока текучей среды ствола буровой скважины, проходящего в насосно-компрессорной колонне, и будут генерировать выходной сигнал, представляющий эти измененные давление и скорость потока, который передается наверх к устью скважины. Например, так, как это описано в патенте США 4896722, выданном Апчарчу, который уже был включен в описание этой заявки в качестве ссылки. На фиг. 19 иллюстрируется простая испытательная система буровой скважины, содержащая интеллектуальный регулирующий клапан 12, иллюстрируемый на фиг. 18; однако на фиг. 19 иллюстрируется вычислительное устройство 30, выполненное с возможностью расположения на поверхности ствола буровой скважины и хранения машинной программы 30 А "процесса текущего контроля и управления". Помимо этого, на фиг. 19 иллюстрируется также имитатор, известный как "скрытый имитатор" 32, выполненный с возможностью моделирования и имитации характеристик слоя нефтяного пластового резервуара. Как показано на фиг. 19, если датчики 24 текущего контроля передают свои выходные сигналы 24 А вверх к устью буровой скважины, представляющие давление, и/или скорость потока, и/или другие данные текучей среды буровой скважины, проходящей в насосно-компрессорной колонне испытательной системы буровой скважины, иллюстрируемой на фиг. 19, то эти выходные сигналы 24 А будут приняты вычислительным устройством 30, которое расположено на поверхности ствола буровой скважины. Вычислительное устройство 30 хранит машинную программу, известную как "процесс текущего контроля и управления", в соответствии с одним аспектом настоящего изобретения. Выходные сигналы 24 А, которые генерируются датчиками 24 текущего контроля, будут ниже называться "фактическими сигналами",например "фактической скоростью потока " или "фактическим давлением" и так далее, поскольку выходные сигналы 24 А определяют значение "фактической" скорости потока и/или "фактического" давления текучей среды ствола буровой скважины, поток которой проходит в насосно-компрессорной колонне испытательной системы буровой скважины, иллюстрируемой на фиг. 19. Когда вычислительное устройство 30 выполняет процесс 30 А текущего контроля и управления в ответ на "фактические" сигналы 24 А,вычислительное устройство 30 генерирует выходной сигнал, который, в конечном счете, изменяет "сигнатуру" интеллектуальных управляющих импульсов 18, как показано на фиг. 19. Между тем, как показано на фиг. 19, "скрытый имитатор" 32 моделирует и имитирует характеристики слоя нефтяного пластового резервуара, показанного на фиг. 19, и, как результат, "скрытый имитатор" 32 прогнозирует скорость потока, и/или давление, и/или другие данные, связанные с текучей средой ствола буровой скважины, которая выпускается из перфорационных отверстий 34, иллюстрируемых на фиг. 19, как указано на фиг. 19 ссылочным номером 36. "Скрытый имитатор" может быть получен по лицензии или иначе доступен из-3 005604 компании Schlumberger Technology Corporation, заключающей сделки через отделение Schlumberger Information Solution, находящееся в Хьюстоне, штат Техас. Выход, показанный стрелками 38, "скрытого имитатора" 32, иллюстрируемого на фиг. 19, представляет скорость потока, и/или давление, и/или другие данные, связанные с текучей средой ствола буровой скважины, которая, как прогнозирует "скрытый имитатор" 32, будет выпускаться из перфорационных отверстий 34, иллюстрируемых на фиг. 19. Как результат, выход, показанный стрелками 38, генерируемый "скрытым имитатором" 32, иллюстрируемым на фиг. 19, представлен "целевыми" сигналами 38, например, "целевой" скоростью потока 38, и/или "целевым" давлением 38, и/или "целевыми" другими данными 38, которые "скрытый имитатор" 32 прогнозирует, связанными с текучей средой ствола буровой скважины, которая будет выпускаться из перфорационных отверстий 34, показанных на фиг. 19. В процессе работы, как показано на фиг. 17, 18 и 19, интеллектуальные управляющие импульсы 18,имеющие "заданную сигнатуру", передают вниз по скважине и импульсы 18 принимаются интеллектуальным регулирующим клапаном 12. Указанная "заданная сигнатура" импульсов 18 принимается командным датчиком 14 и, в конечном счете, платой 20 контроллера. "Заданная сигнатура" расположена в запоминающем устройстве микропроцессора на плате 20 контроллера, "особая машинная программа",соответствующая "заданной сигнатуре" и хранимая в запоминающем устройстве микропроцессора, выполняется, и, как результат, затвор 12 А интеллектуального регулирующего клапана 12 открывается и/или закрывается "заданным способом" в соответствии с выполнением "особой машинной программы". Текучая среда ствола буровой скважины, имеющая скорость потока, давление и другие характерные данные теперь течет в насосно-компрессорной колонне испытательной системы буровой скважины, иллюстрируемой на фиг. 19. Теперь датчики 24 текущего контроля будут воспринимать "фактическую" скорость потока, и/или "фактическое" давление, и/или другие "фактические" данные, связанные с текучей средой ствола буровой скважины, поток которой проходит внутри насосно-компрессорной колонны, иллюстрируемой на фиг. 19, и выходные сигналы 24 А, представляющие эти "фактические" данные, генерируются датчиками 24. Эти выходные сигналы 24 А предусматриваются как "входные данные" в вычислительное устройство 30, которое может быть расположено на поверхности ствола буровой скважины. Между тем,"скрытый имитатор" 32 прогнозирует "целевую" скорость потока, и/или "целевое" давление, и/или другие "целевые" данные, связанные с текучей средой ствола буровой скважины, которая, как предсказывается, будет вытекать из перфорационных отверстий 34, показанных на фиг. 19, а выходные сигналы 38,генерируемые "скрытым имитатором" 32, представляют "целевые" данные Эти выходные сигналы 38 также предусмотрены как "входные данные" в вычислительное устройство 30, которое может быть расположено на поверхности ствола буровой скважины. Теперь вычислительное устройство 30 принимает как (1) "фактические" данные 24 А, поступающие от датчиков 24, так и (2) "целевые данные" 38, поступающие от имитатора 32. Вычислительное устройство 30 сравнивает "фактические" данные 24 с "целевыми" данными 38. Если "фактические" данные значительно не отклоняются от "целевых" данных 38, то вычислительное устройство 30 не изменит "заданную сигнатуру" интеллектуальных управляющих импульсов 18. Однако допустим, что "фактические" данные 24 на самом деле значительно отклоняются от"целевых" данных 38 В этом случае вычислительное устройство 30 будет выполнять машинную программу, которая хранится в нем, которая известна как "процесс текущего контроля и управления" в соответствии с одним аспектом настоящего изобретения. При выполнении вычислительным устройством 30"процесса текущего контроля и управления", "заданная сигнатура" интеллектуальных управляющих импульсов 18 изменяется на другую, отличающуюся сигнатуру, которая, как известно, названа "другой заданной сигнатурой". Теперь генерируется другой набор управляющих импульсов 18, который имеет"сигнатуру", которая соответствует указанной "другой заданной сигнатуре". Этот новый набор управляющих импульсов 18 передается вниз по буровой скважине и, как результат, затвор 12 А интеллектуального регулирующего клапана 12 открывается и/или закрывается "другим заданным способом", который отличается от предварительно описанного "заданного способа"; например, затвор 12 А может теперь открыться и закрыться со скоростью, которая отличается от используемой ранее скорости открывания и закрывания. Как результат, текучая среда ствола буровой скважины, выпускаемая из перфорационных отверстий 34, теперь потечет через затвор 12 А и вверх к устью буровой скважины к поверхности при скорости потока и/или давлении, которые теперь отличаются от прежних скорости потока и/или давления текучей среды ствола буровой скважины, текущей вверх к устью буровой скважины. Датчик 24 будет измерять скорость потока и/или давление и датчиком 24 будут генерироваться новые "фактические" сигналы 24 А. Эти новые "фактические" сигналы будут сравниваться в вычислительном устройстве 30 с"целевыми" сигналами из имитатора 32 и, если "фактические" сигналы значительно отличаются от "целевых" сигналов, то еще раз будет выполняться "процесс текущего контроля и управления" и, как результат, сигнатура управляющих импульсов 18 будет снова изменена и вниз по буровой скважине будет передан новый третий набор управляющих импульсов 18. Вышеуказанный процесс и процедура будут повторяться до тех пор, пока "фактические" сигналы 24 А не станут незначительно отличаться от "целевых" сигналов 38. Если "фактические" сигналы 24 А остаются значительно отличными от "целевых" сигналов 38, то "скрытый имитатор" 32 будет регулировать "целевые" сигналы 38 до нового значения и вы-4 005604 шеуказанный процесс повторится снова до тех пор, пока "фактические" сигналы 24 А не станут приблизительно равными "целевым" сигналам 38 (то есть несущественно отличными от "целевых" сигналов 38. В описании, приведенном выше, мы описали один клапан в одной буровой скважине и импульс для регулирования одного клапана в одной буровой скважине. Обычному специалисту в этой области техники будет очевидно, что описание, которое было приведено выше, может быть распространено на любое множество клапанов в одной буровой скважине или на множество клапанов во множестве буровых скважин. Кроме того, вместо управления интеллектуальным регулирующим клапаном можно использовать вышеуказанный процесс в вышеприведенном описании для управления процессом активного подъема скважинной текучей среды, например, с помощью (1) электрического насоса, способного действовать,будучи погруженным в воду, (2) газлифта, (3) насоса-качалки с балансирным уравновешиванием, (5) струйного насоса и (6) скважинного сепаратора. Детальная структура "процесса текущего контроля и управления" 30 А, иллюстрируемого на фиг. 18 и фиг. 19 в соответствии с настоящим изобретением, описана ниже со ссылкой на сопроводительные чертежи, приведенные на фиг. 1-14. На фиг. 12, 13 и 14 иллюстрируется последовательность выполняемых действий или блок-схема "процесса текущего контроля и управления" 30 А. Процесс "текущего контроля и управления", соответствующий настоящему изобретению, иллюстрируется на фиг. 1-14. Перед объяснением последовательности выполняемых действий, приведенной на фиг. 12, 13 и 14, мы начинаем это описание с простого примера для пояснения этого феномена со ссылкой на фиг. 1-11. Рассмотрим случай одного слоя нефтяного пластового резервуара. Пластовый резервуар пересекается буровой скважиной с интеллектуальным регулирующим клапаном, расположенным в слое (смотри ссылку 1, приведенную ниже). Клапан обеспечивает возможность изменения скорости движения текучей среды между пластовым резервуаром и внутренней областью буровой скважины путем изменения положения клапана. Предположим, что буровую скважину используют для нагнетания воды в нефтеносный слой для того, чтобы помочь проталкиванию нефти к другой буровой скважине, которая производит нефть из этого слоя пластового резервуара. Кроме того, предположим, что в результате предшествующих прогнозов или числового моделирования пластового резервуара и буровой скважины было определено,что идеальным способом нагнетания воды в слой является нагнетание с низкой постоянной скоростью. При постоянной скорости совокупная или промежуточная сумма воды прямолинейно увеличивается в функции от времени, как иллюстрируется на фиг. 1. В нижней части фиг. 1 показано, что скважинный дроссель (интеллектуальный регулирующий клапан) позиционируют в первом из четырех возможных положений отверстия для впуска или выпуска текучей среды. Прямолинейную общую тенденцию называют целью, поскольку она обеспечивает оптимальную скорость и является желательной для поддержания нагнетания воды как можно более близко к этой линии. Предположим, что пластовый резервуар начинает выпуск продукции и в течение пускового периода(времени ввода пластового резервуара в действие) воду нагнетают в буровую скважину так, как это было запланировано. На фиг. 2 иллюстрируется ситуация, имеющая место через две недели. Фактическое совокупное нагнетание представляет собой волнистую линию, обвивающую цель, означая, что процесс нагнетания воды в слой продолжается без проблемы. На фиг. 3 иллюстрируется ситуация, которая имеет место через четыре недели. Теперь, возможно,вследствие отказа источника нагнетания воды скорость нагнетания упала до нуля, а совокупные уровни кривой нагнетания приобрели нулевой наклон. Теперь фактический совокупный нагнетаемый объем находится значительно ниже требуемого целевого значения. На фиг. 4 показан результат оценки того, что случится, если скважинный дроссель (интеллектуальный регулирующий клапан (ICV перемещается в положение 2. Кружок показывает, что отверстие клапана переместит производство в верхнем направлении. По этой причине решено открыть интеллектуальный регулирующий клапан (ICV) и продолжать добычу, как иллюстрируется на фиг. 5. Теперь после десяти недель нагнетания фактическое совокупное нагнетание следует цели, но снова имеет место смещение ниже целевого значения. На фиг. 6, как и на фиг. 4, иллюстрируется оценка ситуации для того, чтобы увидеть, что случится, если интеллектуальный регулирующий клапан (ICV) снова сместится на одно положение в положение 3. Это сместит совокупную добычу в положительном направлении (вверх), итак решено сделать это. На фиг. 7 иллюстрируется результат продолжающейся добычи с интеллектуальным регулирующим клапаном (ICV) в положении 3 из четырех. Теперь, к сожалению, совокупный объем не увеличивается вблизи цели. Кроме того, как показано на фиг. 8, оценка того, что случится, если клапан открыт в последнем четвертом положении, показывает, что этой коррекции не достаточно для возврата совокупного нагнетания к цели. Действительно, как показано на фиг. 9, после пятнадцати недель работы несоответствие между фактической кривой и целевой кривой недопустимо велико. На фиг. 10 показано, что в это время необходимо повторно оценить общее поведение числовой модели пластового резервуара и определить новую цель (начиная с пятнадцатой недели), допуская, что клапан остается в положении 4.-5 005604 На фиг. 11 показано, что, продолжая при новой скорости нагнетания, фактическая и целевая кривые совмещаются и процесс продолжается без проблемы. Только что описанный простой пример иллюстрирует способ регулирования скважинных регулирующих клапанов на основе частого (например, в час-день) текущего контроля данных, например, давления или скорости потока в скважине в слое нефтяного или газового пластового резервуара. На фиг. 12-14 приведена серия из трех диаграмм последовательности выполняемых действий. На фиг. 12 приведен высокий уровень обобщения последовательности выполняемых действий. Фиг. 12 содержит медленный цикл и быстрый цикл, причем как медленный цикл, так и быстрый цикл показаны более подробно на фиг. 13 и фиг. 14, соответственно. Ниже приведено описание этих подробных последовательностей выполняемых действий. Последовательность выполняемых действий определения оптимальных характеристик промысла На фиг. 12 иллюстрируется последовательность выполняемых действий высокого уровня; отдельные действия или задачи пронумерованы и обозначены индексами для текста, приведенного ниже. Эта последовательность выполняемых действий содержит медленный цикл и быстрый цикл (описанные в приложениях 2 и 3, приведенных ниже), которые, как показано, взаимодействуют на высоком уровне. В медленном цикле для определения оптимального будущего развития промысла используют моделирование пластового резервуара и сетки размещения буровых скважин. Быстрый цикл преобразует результаты медленного цикла в повседневные оперативные управления добычей, например, регулировки интеллектуальных регулирующих клапанов, и так далее. В общем, ожидается, что последовательность выполняемых действий содержит следующие серии действий по моделированию и планированию: Медленный цикл - cпаренную модель (CRNM) пластового резервуара и сетки размещения буровых скважин используют для прогнозирования оптимальных будущих целевых давлений Рtк и целевых скоростей Ftk (позиция В на фиг. 12) многофазного потока для буровых скважин и зон при временном интервале k. На фиг. 1 специально иллюстрируется простой пример выхода этого процесса, причем целевую зональную скорость нагнетания в течение семнадцати недель вычисляли при использовании имитатора. Спаренная модель пластового резервуара и сетки размещения буровых скважин (CRNM) прогнозирует также будущие сетевые линейные регулировки Ltk. Линейными регулировками являются подбор отдельных буровых скважин в группе для одной из двух подводных производственных линий. Затем,основываясь на целевой информации Ptk и Ftk спаренной модели пластового резервуара и сетки размещения буровых скважин (CRNM), используют модель (WNM) буровая скважина-сетка размещения буровых скважин для прогнозирования оптимальных будущих целевых регулировок Stk скважинных клапанов. На начальном временном интервале спаренную модель пластового резервуара и сетки размещения буровых скважин (CRNM) определяют посредством процесса характеризации на основе доступных данных о пластовом резервуаре, буровой скважине, а также геологических данных. Регулировки клапанов и линейные регулировки Stk и Ltk, соответственно, сообщают на промысел, и они становятся фактическими регулировками Sak и Lak (позиция С на фиг. 12). Промысел создают в течение некоторого периода времени (например, нескольких дней). В течение этого временного интервала получают данные измерений в реальном масштабе времени, например, поверхностные и скважинные давления Раk, скорости Fak многофазного потока (позиция D на фиг. 12). Данные, полученные в результате измерения скорости потока, в зависимости от обстановки распределяют по буровым скважинам и зонам. Сравнивают измеренные и целевые совокупные скорости многофазного потока (позиция Е на фиг. 12). На фиг. 2-12 приведены иллюстрации сравнения целевых (прямая линия) и измеренных (извилистая линия) совокупных скоростей зонального нагнетания для примера, описанного выше. Дополнительно сравнивают измеренные и целевые давления. Если несоответствия между измеренными и целевыми значениями находятся в пределах определенного допуска, то модель правильно прогнозирует эксплуатационную характеристику. В этом случае не требуется коррекции, и добыча на промысле продолжается в течение другого временного интервала(позиция F на фиг. 12) На фиг. 2 иллюстрируется пример с незначительным измеренным несоответствием. Измеренные несоответствия могут быть большими. Продолжение рассмотрения вышеописанного простого примера, фиг. 3, показывает измеренную скорость зонального нагнетания вплоть до четырех недель, где скорость нагнетания упала до нуля в течение двух недель. В этом случае значительного несоответствия процесс входит в модель (позиция G на фиг. 12) быстрой добычи. Быстрый цикл вычисляет новые клапанные и линейные регулировки для уменьшения несоответствий и возврата промысловых давлений и скоростей ближе к целям. На фиг 4 иллюстрируется новая целевая траектория (небольшой круг) для возврата совокупного нагнетаемого зонального объема к исходной цели. Если быстрый цикл не способен определить новые клапанные и линейные регулировки, которые уменьшают несоответствия (позиция Н на фиг. 12), или тенденции в несоответствиях наводят на мысль,что спаренная модель пластового резервуара и сетки размещения буровых скважин (CRNM) дальше не действует, то процесс возвращается в 1 к разработке новых прогнозирующих целей.-6 005604 Последовательность выполняемых действий медленного цикла На фиг. 13 иллюстрируется последовательность выполняемых действий медленного цикла. В общем, ожидается, что последовательность выполняемых действий медленного цикла, выполняемая только в том случае, если это требуется, содержит следующие серии действий по моделированию и планированию. Во временном интервале k обновление (позиция I на фиг. 13) спаренной модели пластового резервуара и сетки размещения буровых скважин (CRNM) путем удлинения исторически согласованного периода (НМ) при использовании доступных скважинных и зональных скоростей Fak многофазных потоков и учете любых изменений сетки размещения буровых скважин с последнего обновления модели: Sak иLak. Проверка того, что исторически согласованная модель является действующей (позиция J на фиг. 13), путем сравнения фактических измеренных данных с данными, прогнозируемыми из спаренной модели пластового резервуара и сетки размещения буровых скважин (CRNM), например, с зависимостями скоростей потоков газа-нефти, содержания воды в пластовой жидкости, давлений и так далее от времени. Если модель не действует в пределах определенного допуска, то обновление исторически согласованной модели (позиция K на фиг. 13) путем модификации основной геомодели. Как только спаренная модель пластового резервуара и сетки размещения буровых скважин (CRNM) достаточно исторически согласована, проведение прогнозирующего моделирования (позиция L на фиг. 13) при использовании спаренной модели пластового резервуара и сетки размещения буровых скважин(CRNM) для определения новых оптимальных траекторий давлений Ptk, скважинных и зональных скоростей Ftk многофазных потоков и так далее (позиция М на фиг. 13). Спаренная модель пластового резервуара и сетки размещения буровых скважин (CRNM) описывает действия пластового резервуара, буровой скважины, насосно-компрессорной колонны и сетки размещения буровых скважин и вычисляет оптимальные линейные регулировки Ltk. Спаренная модель пластового резервуара и сетки размещения буровых скважин (CRNM) дает модель ствола буровой скважины, но не дает подробной модели регулировок скважинных регулирующих поток клапанов. Поскольку величина временного интервала спаренной модели пластового резервуара и сетки размещения буровых скважин (CRNM), как правило, намного больше интервала между регулировками промысловой системы, спаренная модель пластового резервуара и сетки размещения буровых скважин (CRNM) дает только общие тенденции перепадов давления в клапанах, необходимые для получения оптимальных целевых скоростей. На основе результатов Ptk и Ftk, прогнозируемых при использовании спаренной модели пластового резервуара и сетки размещения буровых скважин (CRNM), использование (позиция О на фиг. 13) модели буровая скважина-сетка размещения буровых скважин (WNM) для определения регулировок Stk (позицияN на фиг. 13) скважинных регулирующих клапанов, которые дают перепады давлений, которые должны тесно согласовываться с прогнозируемыми перепадами давлений. Последовательность выполняемых действий быстрого цикла Последовательность выполняемых действий быстрого цикла, иллюстрируемая на фиг. 14, будет осуществляться в дневном-недельном масштабе времени, и ожидается, что она содержит следующие серии действий: Во временном интервале k осуществляют историческое согласование модели буровая скважинасетка размещения буровых скважин (WNM) (позиция Р на фиг. 14) с фактическими скоростями Fak и давлениями Pak многофазных скважинных и зональных потоков, учитывая фактические линейные регулировки Lak и регулировки Sak клапанов. Историческое согласование выполняют путем регулировки соотношений многофазных потоков. Делают анализ несоответствий между фактическими и прогнозируемыми скоростями и давлениями. В более раннем примере на фиг. 7 иллюстрируются прогнозируемые и фактические зональные нагнетаемые совокупные объемы, где большое несоответствие было получено в период между восьмой и тринадцатой неделями в результате ослабления нагнетания. Следует отметить, что такие несоответствия могут иметь место вследствие плановых и неплановых перерывов в работе, причем плановые перерывы в работе могут быть упреждены, а технологические регулировки превентивно оптимизированы. В случае большого несоответствия необходимо возвратить тенденции давления и совокупных скоростей назад к оптимальным прогнозируемым траекториям. Определяют изменения в целевых скоростях Ftk потоков для достижения плавного возврата к прогнозируемым тенденциям. Плавный возврат может потребовать незначительных модификаций, распределенных в нескольких временных интервалах. Используя исторически согласованную модель буровая скважина-сетка размещения буровых скважин (WNM) из этапа 1 и отрегулированные скорости Ftk потоков из этапа 2, вычисляют (позиция Q на фиг. 14) набор регулировок Stk, устанавливаемых (позиция R на фиг. 14) для следующего временного интервала для достижения скоростей Ftk потоков. Таким образом, настоящее изобретение описано, причем очевидно то, что описанный вариант осуществления настоящего изобретения может быть изменен различными способами. Такие изменения не рассматриваются, как отклонение от сущности и объема настоящего изобретения, и предполагается, что-7 005604 все такие модификации, как будет очевидно квалифицированным специалистам в этой области техники,входят в объем формулы изобретения, приведенной ниже. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ непрерывного определения оптимальных характеристик пластового резервуара буровой скважины и наземных распределительных сетей, предусматривающий следующие стадии:(a) передача входного воздействия, имеющего заданную сигнатуру, вниз по скважине в стволе буровой скважины и управление скважинным аппаратом, выполненным с возможностью размещения в указанном стволе буровой скважины;(b) непрерывный текущий контроль фактической характеристики текучей среды ствола буровой скважины, протекающей в насосно-компрессорной колонне указанного скважинного аппарата, в ответ на передачу входного воздействия и генерирование фактических сигналов, представляющих указанную фактическую характеристику указанной текучей среды ствола буровой скважины;(c) прогнозирование целевой характеристики указанной текучей среды ствола буровой скважины,протекающей в указанной насосно-компрессорной колонне, и генерирование целевых сигналов, представляющих указанную целевую характеристику указанной текучей среды ствола буровой скважины;(d) сравнение указанных фактических сигналов с указанными целевыми сигналами и выполнение процесса текущего контроля и управления, если указанные фактические сигналы не являются приблизительно равными указанным целевым сигналам;(e) изменение заданной сигнатуры указанного входного воздействия в ответ на выполнение предыдущей стадии, генерируя в соответствии с этим второе входное воздействие, имеющее вторую заданную сигнатуру; и(f) повторение стадий (а)-(е), используя указанное второе входное воздействие, и непрерывное изменение заданной сигнатуры входного воздействия до тех пор, пока указанные фактические сигналы не станут приблизительно равными указанным целевым сигналам. 2. Способ по п.1, отличающийся тем, что прогнозирование целевой характеристики указанной текучей среды на стадии (с) предусматривает стадию (с 1) генерирования второго целевого сигнала, представляющего указанную целевую характеристику указанной текучей среды ствола буровой скважины, если после повторения стадии (f) указанные фактические сигналы не становятся приблизительно равными указанным целевым сигналам. 3. Устройство, выполненное с возможностью непрерывного определения оптимальных характеристик пластового резервуара буровой скважины и наземных распределительных сетей, содержащее первое средство для передачи входного воздействия, имеющего заданную сигнатуру, вниз по скважине в стволе буровой скважины и для управления скважинным аппаратом, выполненным с возможностью размещения в указанном стволе буровой скважины; второе средство для непрерывного текущего контроля фактической характеристики текучей среды ствола буровой скважины, протекающей в насосно-компрессорной колонне указанного скважинного аппарата, в ответ на передачу указанным первым средством входного воздействия и генерирования фактических сигналов, представляющих указанную фактическую характеристику указанной текучей среды ствола буровой скважины; третье средство для прогнозирования целевой характеристики указанной текучей среды ствола буровой скважины, протекающей в указанной насосно-компрессорной колонне, и генерирования целевых сигналов, представляющих указанную целевую характеристику указанной текучей среды ствола буровой скважины; четвертое средство для сравнения указанных фактических сигналов с указанными целевыми сигналами и выполнения процесса текущего контроля и управления, если указанные фактические сигналы не являются приблизительно равными указанным целевым сигналам, причем указанное четвертое средство изменяет заданную сигнатуру указанного входного воздействия, если выполнение указанного процесса текущего контроля и управления завершено, и генерирует второе входное воздействие, имеющее вторую заданную сигнатуру, причем указанное первое средство передает второе входное воздействие, имеющее указанную вторую заданную сигнатуру, вниз по скважине в стволе буровой скважины и управляет указанным скважинным аппаратом,указанное второе средство осуществляет непрерывный контроль указанной фактической характеристики указанной текучей среды ствола буровой скважины, протекающей в насосно-компрессорной колонне, и генерирует дополнительные фактические сигналы, представляющие указанную фактическую характеристику указанной текучей среды ствола буровой скважины,указанное третье средство генерирует указанные целевые сигналы, представляющие указанную целевую характеристику указанной текучей среды ствола буровой скважины, а указанное четвертое средство сравнивает указанные дополнительные фактические сигналы с указанными целевыми сигналами и непрерывно повторно выполняет указанный процесс текущего контроля-8 005604 и управления до тех пор, пока указанные фактические сигналы не станут приблизительно равными указанным целевым сигналам. 4. Устройство по п.3, отличающееся тем, что указанное третье средство генерирует дополнительные целевые сигналы, представляющие указанную целевую характеристику указанной текучей среды ствола буровой скважины, если указанные фактические сигналы не являются приблизительно равными указанным целевым сигналам, причем указанное четвертое средство сравнивает указанные дополнительные фактические сигналы с указанными дополнительными целевыми сигналами и непрерывно повторно выполняет указанный процесс текущего контроля и управления до тех пор, пока указанные дополнительные фактические сигналы не станут приблизительно равными указанным дополнительным целевым сигналам.

МПК / Метки

МПК: E21B 43/00

Метки: наземных, распределительных, оптимальных, скважины, характеристик, пластового, резервуара, сетей, буровой, определение

Код ссылки

<a href="https://eas.patents.su/16-5604-opredelenie-optimalnyh-harakteristik-plastovogo-rezervuara-burovojj-skvazhiny-i-nazemnyh-raspredelitelnyh-setejj.html" rel="bookmark" title="База патентов Евразийского Союза">Определение оптимальных характеристик пластового резервуара, буровой скважины и наземных распределительных сетей</a>

Похожие патенты