Способ и устройство для определения областей, представляющих интерес, в изображениях и для передачи изображения

Номер патента: 4910

Опубликовано: 26.08.2004

Авторы: Хобсон Паола Марселла, Кадир Тимор

Скачать PDF файл.

Формула / Реферат

1. Способ упорядочения пикселей в изображении по степеням выделенности, заключающийся в том, что

a) определяют множество областей для каждого из множества пикселей в изображении, причем каждая из указанных областей для любого из указанных пикселей с координатами (x, y) имеет различный масштаб s,

b) вычисляют значение энтропии для каждой из указанных областей,

c) идентифицируют любые области с пиковой энтропией, причем области с пиковой энтропией являются областями, которые включают пиковое значение энтропии,

d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии, и

e) упорядочивают указанные области с помощью указанных взвешенных пиковых значений энтропии, тем самым осуществляют упорядочение указанных пикселей.

2. Способ по п.1, отличающийся тем, что при вычислении b) вычисляют оценку функции плотности распределения (ФПР) для указанных пикселей внутри каждой из указанных областей.

3. Способ по п.2, отличающийся тем, что при вычислении b) осуществляют вычисление, использующее оценку ФПР по методу окна Парзена.

4. Способ по п.2, отличающийся тем, что при вычислении b) осуществляют вычисление, использующее гистограммное накопление.

5. Способ по п.1, отличающийся тем, что дополнительно применяют усреднение по трем величинам по отношению к указанной оценке ширины пика, до осуществления указанной операции взвешивания d).

6. Способ по п.1, отличающийся тем, что при взвешивании d) осуществляют взвешивание в соответствии с величиной W(x, y, s) по формуле

S(x, y, s)=H(x, y, s)Ч W(x, y, s),

где

Рисунок 1

и H(x, y, s) является локальной энтропией.

7. Способ определения выделенных областей в изображении, заключающийся в том, что

a) определяют множество областей для каждого из множества пикселей в изображении, причем каждая из указанных областей для любого из указанных пикселей с координатами (x,y) имеет различный масштаб s,

b) вычисляют значение энтропии для каждой из указанных областей,

c) идентифицируют любую из указанных областей как имеющую пиковое значение энтропии,

d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии, и

e) для каждой выбранной области из указанных областей с пиковым значением энтропии

i) выбирают по меньшей мере одну из соседних областей с пиковым значением энтропии,

ii) определяют среднее значение и дисперсию каждого x, y и s для указанной выбранной области с пиковым значением энтропии и указанной по меньшей мере одной соседней области, и при этом наибольшая из указанных дисперсий не превышает заданное пороговое значение, и

iii) удаляют из набора указанных областей с пиковыми значениями энтропии любые области внутри заданного интервала расстояний от указанной средней точки (x, y, s) и

iv) сохраняют указанные средние значения, тем самым обозначают область, представляющую интерес.

8. Способ по п.7, отличающийся тем, что дополнительно осуществляют операцию e) в порядке указанных взвешенных пиковых значений энтропии.

9. Способ по п.7, отличающийся тем, что области являются точечными областями и дисперсия равна нулю.

10. Способ по п.7, отличающийся тем, что существуют только две области и вычисление дисперсии отбрасывают.

11. Способ передачи изображения, заключающийся в том, что

a) определяют множество областей для каждого из множества пикселей в изображении, причем каждая из указанных областей для любого из указанных пикселей с координатами (x, y) имеет различный масштаб s,

b) вычисляют значение энтропии для каждой из указанных областей,

c) идентифицируют любые области с пиковой энтропией, причем области с пиковой энтропией являются областями, которые включают пиковое значение энтропии,

d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии и

e) упорядочивают указанные области с помощью взвешенных пиковых значений энтропии, тем самым осуществляют упорядочение указанных пикселей.

12. Способ передачи изображения, заключающийся в том, что

a) определяют множество областей для каждогоиз множества пикселей в изображении, причем каждая из указанных областей для любого из указанных пикселей с координатами (x, y) имеет различный масштаб s,

b) вычисляют значение энтропии для каждой из указанных областей,

c) идентифицируют любую из указанных областей как имеющую пиковое значение энтропии,

d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии, и

e) для каждой выбранной области из указанных областей с пиковым значением энтропии

i) выбирают по меньшей мере одну из соседних областей с пиковым значением энтропии,

ii) определяют среднее значение и дисперсию каждого x, y и s для указанной выбранной области с пиковым значением энтропии и указанной по меньшей мере одной соседней области, и при этом наибольшая из указанных дисперсий не превышает заданное

пороговое значение, и

iii) удаляют из набора указанных областей с пиковыми значениями энтропии любые области внутри заданного интервала расстояний от указанной средней точки (x, y, s) и

iv) сохраняют указанные средние значения, тем самым обозначают область, представляющую интерес.

13. Устройство для упорядочения пикселей в изображении по степеням выделенности, содержащее

a) средство для определения множества областей для каждого из множества пикселей в изображении, причем каждая из указанных областей имеет различный масштаб для любого пикселя из указанных пикселей с координатами x, y,

b) средство для вычисления значения энтропии для каждой из указанных областей,

c) средство для идентификации любых областей с пиковой энтропией, причем области с пиковой энтропией представляют собой области, которые включают пиковое значение энтропии,

d) средство для взвешивания указанного пикового значения энтропии каждой области с пиковой энтропией с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии,

e) средство для упорядочения указанных областей с помощью взвешенных пиковых значений энтропии, тем самым для упорядочения указанных пикселей.

14. Устройство для передачи изображения, содержащее устройство для упорядочения пикселей в изображении по степеням выделенности, причем устройство для упорядочения пикселей содержит

a) средство для определения множества областей для каждого из множества пикселей в изображении, причем каждая из указанных областей имеет различный масштаб для любого пикселя из указанных пикселей с координатами x, y,

b) средство для вычисления значения энтропии для каждой из указанных областей,

c) средство для идентификации любых областей с пиковой энтропией, причем области с пиковой энтропией представляют собой области, которые включают пиковое значение энтропии,

d) средство для взвешивания указанного пикового значения энтропии каждой области с пиковой энтропией с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии,

e) средство для упорядочения указанных областей с помощью указанных взвешенных пиковых значений энтропии, тем самым для упорядочения указанных пикселей.

Рисунок 2

 

Текст

Смотреть все

1 Область техники, к которой относится изобретение Настоящее изобретение, в основном, относится к области обработки изображения. Более конкретно, но не исключительно, изобретение касается способов и устройства для определения областей, представляющих интерес, в изображениях, предназначенных для передачи. Уровень техники Существует увеличивающийся разрыв между требованиями, предъявляемыми к данным,передаваемым через компьютерные сети, и доступностью полосы пропускания. Также существуют повышенные требования для передачи данных через цифровые радиолинии, например,к мобильным системам радиосвязи и мобильным телефонам и от них. Это стало предпосылкой для поиска улучшенных способов сжатия данных и более эффективных методов передачи. Методы передачи предшествующего уровня техники, которые являются особенно подходящими для применения в видеоустройствах,сосредотачиваются на интерпретации данных изображения у передающего источника, точнее передаче интерпретированных данных, а не самого изображения и использовании интерпретированных данных по назначению. Интерпретированные данные могут передаваться, а могут и не передаваться в сжатой форме. Альтернативными подходами к интерпретации изображения являются "управление изображением" или подход "снизу-вверх" (восходящий) и "управление моделью" или подход"сверху-вниз" (нисходящий). Подход "управление изображением" основан на элементах изображения, таких, как края или углы, для "естественного" распространения и формирования поддающихся интерпретации моделей содержания изображения. Типичный пример представляет собой символьная (цифровая) сегментация изображения, где задачей является выделение представляющего интерес объекта на переднем плане по сравнению с задним планом. В подходе "управление моделью" информация, касающаяся ожидания содержания, используется для выделения содержания из изображений. Типичным примером является распознавание объекта, когда контурная модель при автоматизированном проектировании (CAD) сравнивается с краями, обнаруженными в изображении, подход, обычно используемый в программах оперативного контроля обрабатывающей промышленности. Ключевое отличие подходов "управление изображением" и "управление моделью" состоит в стадии группирования элементов. В подходе "управление изображением" поисковые точки для группирования элементов исходят от изображения, в то время, как в подходе "управление моделью" поисковые точки исходят от сравниваемых моделей. 2 В одной разновидности подхода "управление изображением" ряд маленьких выделенных пятен или "образов" идентифицируется внутри изображения. Эти образы представляют собой описания представляющих интерес областей. В этом подходе выделенность определяется в терминах сложности или непредсказуемости локального сигнала, или, более конкретно, энтропии локальных характеристик. Образы с высокой сложностью сигнала имеют более плоское распределение интенсивности и, следовательно,более высокую энтропию. В более общем виде,существует высокая сложность любого подходящего дескриптора, который может быть использован как мера локальной выделенности. В известных методах выбора выделенных образов измеряют выделенность образов в одном и том же масштабе по всему изображению. Масштаб для использования при выборе по всему изображению может быть отобран несколькими способами. Обычно выбирается наименьший масштаб, для которого максимум наблюдается при средней глобальной энтропии. Однако размер элементов изображения изменяется. Следовательно, масштаб для анализа, который является оптимальным для данного элемента данного размера, может быть неоптимальным для элемента другого размера. Поэтому существует необходимость дальнейшего улучшения методов выбора выделенных образов. Сущность изобретения Настоящее изобретение описывает способы и устройство для определения областей,представляющих интерес, в изображениях. Настоящее изобретение предлагает пути расширения меры выделенности при масштабировании и, тем самым, обнаружение элементов, которые существуют в очень узком диапазоне масштабов. Это позволяет получить выделенные образы, имеющие оптимальный уровень энтропии. В соответствии с предпочтительным вариантом реализации настоящего изобретения, способ упорядочения пикселей в изображении по степеням выделенности заключается в том, что определяют множество областей для каждого из множества пикселей в изображении, причем каждая из областей для любого пикселя с координатами (х, у) имеет различный масштаб s; вычисляют значение энтропии для каждой из областей; идентифицируют любую из областей как имеющую пиковое значение энтропии; взвешивают пиковое значение энтропии для каждой из областей с пиковой энтропией с помощью весового значения, соответствующего оценке ширины пика пикового значения энтропии; упорядочивают области с помощью взвешенных пиковых значений энтропии, тем самым осуществляют упорядочение пикселей. Кроме того, в соответствии с предпочтительным вариантом реализации настоящего изобретения, вычисление может включать вы 3 числение оценки функции плотности распределения (ФПР, PDF) для пикселей внутри каждой из областей. Стадия вычисления может включать вычисление с использованием оценки ФПР по методу "окна Парзена" ("Parzen window"). Кроме того, вычисление может включать вычисления, использующие гистограммы накопления. Способ, кроме того, может включать применение усреднения по трем величинам по отношению к оценке ширины пика до осуществления взвешивания. Кроме того, в соответствии с предпочтительным вариантом реализации настоящего изобретения взвешивание может включать взвешивание в соответствии с величинойS(x, y, s)=H(x, y, s)W(x, y, s),где и H(x, y, s) является энтропией области (x, y, s),и pi представляет дискретную вероятность. Также в соответствии с предпочтительным вариантом реализации настоящего изобретения предложен способ определения областей выделенности в изображении, причем способ заключается в том, что а) определяют множество областей для каждого из множества пикселей в изображении, причем каждая из областей для любого пикселя с координатами (х, у) имеет различный масштаб s, b) вычисляют значение энтропии для каждой из областей, с) идентифицируют любую из областей как имеющую пиковое значение энтропии; d) взвешивают пиковое значение энтропии каждой из областей с пиковой энтропией с помощью весового значения,соответствующего оценке ширины пика значения пиковой энтропии, и е) для каждой выбранной области с пиковой энтропией f) выбирают,по меньшей мере, одну соседнюю область с пиковой энтропией; g) определяют среднее значение и дисперсию каждой из величин х,у и s для выбранной области с пиковой энтропией и по меньшей мере одну соседнюю область, и определяют, где наибольшая дисперсия не превышает заданное пороговое значение; h) удаляют из областей с пиковой энтропией любые области внутри заданного интервала расстояний от средней точки (x, y, s) и i) сохраняют средние значения, тем самым определяют область, представляющую интерес. Кроме того, в соответствии с предпочтительным вариантом реализации настоящего изобретения, способ включает осуществление операции е) для взвешенных значений пиковой энтропии. Изобретение, кроме того, содержит способ передачи изображения по п.11 формулы изобретения и устройства по пп.12 и 13. 4 Краткое описание чертежей Настоящее изобретение будет понято и более полно оценено с помощью следующего подробного описания, рассмотренного совместно с прилагаемыми чертежами, на которых фиг.1 А представляет собой упрощенную иллюстрацию взятого в качестве примера образа 10, полезную для понимания настоящего изобретения; фиг. 1 В представляет собой упрощенную графическую иллюстрацию анализа энтропии для точек P1 и Р 2 фиг.1 А, полезную для понимания настоящего изобретения; фиг. 2 представляет собой упрощенное изображение блок-схемы способа определения выделенности образа, действующей в соответствии с предпочтительным вариантом реализации настоящего изобретения; фиг. 3 представляет собой упрощенное изображение блок-схемы способа выбора выделенных областей, действующей в соответствии с предпочтительным вариантом реализации настоящего изобретения; и фиг. 4 представляет собой упрощенную иллюстрацию в виде рисунков, показывающую результаты осуществления способа фиг. 2 и 3; фиг. 5 иллюстрирует устройство для упорядочения пикселей в изображении по степеням выделенности, в соответствии с вариантом реализации настоящего изобретения; фиг. 6 и 7 иллюстрируют применения изобретения для распознавания выделенных элементов и масштабов в изображениях отпечатков пальцев. Подробное описание предпочтительных вариантов реализации изобретения Настоящее изобретение расширяет критерии выделенности предшествующего уровня техники, поскольку дает возможность сравнивать выделенность как различных точек пространства, так и масштабов. Изобретение позволяет отбирать определенные выделенные масштабы и выделенные расположения в пространстве одновременно. Для этой идеи характерен тот факт, что элемент может иметь различную величину выделенности при различных масштабах. Изобретение позволяет проводить их непосредственное сравнение. Большая часть многомасштабных подходов к обработке сигнала подразделяется на две основных категории. Схемы первой категории пытаются уловить многомасштабную природу сигналов путем обработки полного многомасштабного представления сигнала. Схемы второй категории пытаются обнаружить наилучший масштаб или ряд масштабов для представления сигнала, часто анализируя полное многомасштабное представление для того, чтобы выбрать представляющий интерес отдельный масштаб(масштабы). Изобретение представляет собой развитие в общем виде второго из этих двух подходов. 5 Выбор масштаба образа и вычисление величин выделенности Способ изобретения наилучшим образом объясняется путем рассмотрения поведения масштабной метрики энтропии при изменении масштабного параметра. Проблема выбора масштаба может быть рассмотрена со ссылкой на фиг.1 А и фиг.1 В. Фиг.1 А представляет собой упрощенную иллюстрацию приведенного в качестве примера образа 10. Фиг.1 В представляет собой упрощенную графическую иллюстрацию анализа энтропии для точек P1 и Р 2. На фиг.1 А образ 10 иллюстрирует элемент внутри изображения. Элемент показан как круг с целью иллюстрации. Ясно, что в реальном изображении элементы могут радикально отличаться по форме от этого идеализированного случая. Что касается фиг.1 А, показано, что образ 10 содержит круг 12, в котором две точки P1 и Р 2 обозначены на краю и в центре круга 12 соответственно. Полный круг 12, включая точки Р 1 и Р 2, должен рассматриваться как полностью темный образ/элемент на изображении. Однако фиг.1 А показывает область внутри круга 12 как заштрихованную область для того, чтобы местоположения точек P1 и Р 2 можно было распознать на фигуре. Квадрат 14 вокруг круга 12 представляет ограничивающий квадрат для масштаба, при котором наблюдается пиковое значение энтропии для образа 10, при рассмотрении около точки Р 2. Это пиковое значение энтропии иллюстрируется на фиг.1 В как максимум в графике для энтропии, отмеченный как Р 2. Ясно, что существует максимум на обоих графиках, для Р 1 и Р 2, для точек P1 и Р 2 соответственно, на фиг.1 В. Не было бы ясно, что является наиболее выделенным, P1 или Р 2, на основании только одной пиковой энтропии, поскольку и P1, и Р 2 имеют пиковые значения энтропии, при различных масштабах. Таким образом, оба графика оказались бы в одинаковой степени полезными при определении подходящего масштаба. Однако на фиг.1B также можно увидеть,что два графика зависимости энтропии от масштаба имеют различную ширину пика. На фиг. 1 В график для P1 приблизительно в два раза шире, чем график для Р 2. Обычно предполагается, что элемент, который содержится в большом количестве масштабов, является особо выделенным. Однако, как описано выше, выделенность основана на сложности, определяемой на основе непредсказуемости. Для изображений реальной жизни это существует при малом количестве масштабов и положений в пространстве, и, следовательно, как считается, является относительно редким. Если изображение было сложным и непредсказуемым для всех положений в пространстве и масштабов, оно будет ли 004910 6 бо широким изображением, либо фрактальноподобным. Следовательно, на фиг.1 В пиковая величина графика для Р 2 реально соответствует большей выделенности, чем пиковая величина для графика P1. Нужно отметить, что данная точка может иметь несколько пиков энтропии,каждый для своего масштаба. Этот анализ фиг.1 В показывает, что ширина графика энтропии, взятая около различных точек на изображении, может служить полезным индикатором. Примечательно, что оценка выделенности на основе только высоты пика не способна делать различие между двумя графиками на фиг. 1 В. Теперь со ссылкой на фиг.2, которая представляет собой упрощенную иллюстрацию блок-схемы способа определения выделенности образа, рассматривается действие блок-схемы в соответствии с предпочтительным вариантом реализации изобретения. В способе фиг. 2 круглая область радиусаs, обычно откалиброванная по минимальному масштабному значению s1, (операция 200), определяется вокруг пикселя с координатами (х, у) в изображении (операция 210). Затем оценивается функция плотности распределения величин пикселей внутри области (операция 220). Величины могут быть величинами интенсивности уровня серого, цветными уровнями или любыми другими характеристиками, используемыми для определения представляющего интерес типа,требуемого для элементов изображения. Оценка функции плотности распределения (ФПР) по методу "окно Парзена" предпочтительно используется, когда предварительно определенное ядро располагается в точках данных на месте расположения образца. Оценка ФПР затем представляет собой сумму всех ядер по оси данных. Гауссово ядро предпочтительно используется для математической трактовки и сглаженной результирующей оценки ФПР, причем сигма контролирует степень сглаживания, применяемую для оценки ФПР. Так как не существует произвольного накопления, значение энтропии является стабильным даже при линейном сдвиге интенсивности. Основной метод гистограммы накопления может быть использован как альтернатива алгоритму оценки ФПР по методу "окно Парзена". В этом методе, вместо размещения ядра, (например, гауссового ядра) в каждой точке данных и последующего суммирования всех ядер для вычисления оценки ФПР, ось данных просто подразделяется на ряд элементов дискретизации,например, на 16 или 32 элемента дискретизации,причем каждый элемент дискретизации имеет верхние и нижние значения данных. Подсчет для каждого элемента дискретизации сохраняется и увеличивается для каждого пикселя внутри локального окна, которое находится между верхними и нижними значениями данных для этого элемента дискретизации. 7 После вычисления ФПР вычисляется энтропия Н области (x,y,s) (операция 230) по формуле где рi - дискретные вероятности и 0Pi1. Затем радиус s увеличивается за счет следующего приращения масштаба (операция 240),и предыдущие операции повторяются для всех масштабов s между s1 и максимальной величиной масштаба s2 (операция 250). После того, как энтропия вычислена для всех областей между s1 и s2 для пикселя (х, у), определяются те области,которые имеют пиковую энтропию по отношению к энтропии непосредственно предшествующих и последующих областей (операция 260). Энтропия Н каждой области с пиковой энтропией затем взвешивается в соответствии с величиной W(x, y, s), которая пропорциональна оценке ширины ее пика (операция 270), для того, чтобы создать меру выделенности S по формуле: Операции 200-270 затем предпочтительно повторяются для всех пикселей изображения(операция 280). После того, как значения энтропии областей пиковой энтропии взвешены, они предпочтительно упорядочиваются с помощью взвешенных значений пиковой энтропии, в результате осуществляется упорядочение пикселей за счет пиковой выделенности (операция 290). Способ изобретения является новым, благодаря использованию ширины пика в качестве взвешивающего фактора при вычислении выделенности. Однако реальная методика, выбранная для оценки ширины пика, представляет дальнейшее усовершенствование основной идеи использования ширины пика. Изобретатели выбрали метод оценки ширины пика, который включает вычисление суммы абсолютных отклонений гистограммы, измеренной для пиковых значений. Гистограмма,обозначенная здесь, представляет собой аппроксимацию непрерывной функции плотности распределения распределения интенсивности вокруг точек, таких, как P1 и Р 2 на фиг. 1 А. Если сумма является большой, это показывает, что пик распределения интенсивности, см. фиг.1 В,очень резкий. Малое значение суммы показывает, что пик, вероятно, является довольно широким. Преимущество вычисления такой суммы абсолютных отклонений состоит в том, что это помогает избежать частных случаев, которые должны быть распределены по отдельности для простого измерения ширины пика. Эти частные случаи замедляли бы компьютерные вычисления, если бы изобретатели выбрали осуществление простого вычисления ширины пика. По 004910 8 этому вычисление суммы абсолютных отклонений является трудоемким и не допускает значительных задержек при компьютерных расчетах. Вычисление суммы абсолютных отклонений представляет собой вычисление, упоминавшееся выше, и производится по формуле Таким образом, W является суммой абсолютных отклонений, взвешенных с помощью масштаба s. Простое усреднение по трем величинам может использоваться по отношению к оценке ширины пика до взвешивания величины энтропии для того, чтобы увеличить устойчивость по отношению к шуму. После того, как вычислена взвешенная величина, величина W(x,y,s), пропорциональная оценке ширины пика для каждого масштаба s, заменяется средним для величин при значениях s-1, s и s+1. Это среднее равно:(W(x, y, s-l)+W(x, y, s)+W(x, y, s+l)/3. Для минимального и максимального масштабов это действие обычно не проводилось бы. Выбор области и группирование Преимущественным является устойчивый отбор отдельных точек с максимумом энтропии. Это основано на неизменности этих точек в различных условиях создания изображения, таких,как шум или небольшие перемещения. Известно, что присутствие шума в изображении действует как генератор случайных чисел и в общем увеличивает значение энтропии, делая низкие значения энтропии больше высоких значений энтропии. Однако действие шума также в значительной степени зависит от формы локальной поверхности энтропии вокруг максимума. Так как точка максимума узкого пика менее подвержена воздействию шума, чем точка широкого пика, устойчивость отбора отдельных точек с максимумом энтропии основана на остроте пика. Форма поверхности энтропии зависит от трех основных факторов: поверхности интенсивности оригинального изображения, формы окна выбора образца или представляющей интерес области (ПИО) и размера представляющей интерес области (масштаба). Форма ПИО является круглой, так как это позволяет значению энтропии быть инвариантным относительно вращения. Зависимость от поверхности изображения есть результат рассогласования между размером ПИО при выборе образца и/или формой и элементом изображения, представляющим интерес. Из предположения, что масштаб подобран правильно и форма ПИО является фиксированной, следует, что эта зависимость не является регулируемой, и что отбор отдельных точек в пространстве энтропии не является устойчивым методом. Более устойчивым методом был бы отбор областей, а не точек в пространстве энтропии. Хотя индивидуальные пиксели внутри выделен 9 ной области могут испытывать воздействие шума в любой данный момент, маловероятно, чтобы все они испытывали такое воздействие, что область как целое становится невыделенной. Теперь будет сделана ссылка на фиг. 3. Фиг. 3 представляет собой упрощенную иллюстрацию блок-схемы способа выбора выделенных областей, действующей в соответствии с предпочтительным вариантом реализации настоящего изобретения. В способе фиг. 3 обрабатываются только области с пиковой энтропией, как определяется на фиг. 2. Обработка этих областей является следующей. Выбирается область (x, y, s) с пиковой энтропией и наибольшей выделенностью, как определяется с помощью способа на фиг. 2 (операция 300). Сам пик (x, y, s) определяется с помощью центральной точки области. Затем выбираются К ближайших областей с пиковыми значениями энтропии (операция 310). Близость может определяться в пространстве (x,y,s) на основе суммы квадратов векторов расстояний (x2+y2+s2). Величина К определяет устойчивость по отношению к шуму элементов изображения, которые определяются. В результате большая величина К будет в больших областях с хорошо установленными свойствами,которые определяются, например, в изображении автомобиля. Меньшая величина К позволяет определить элементы изображения с более тонкими деталями, например, в изображении автомобильной антенны. К предпочтительно подбирается до тех пор, пока не превышается заданный порог дисперсии. После того, как определено К областей с пиковыми значениями энтропии для выбранной области с пиковым значением энтропии, для всех выбранных областей вычисляются средние значения х, у и s и дисперсия для всех выбранных областей (операция 320). Наибольшая из трех дисперсий затем сравнивается с пороговым значением. Пороговая величина может быть установлена в соответствии с известными алгоритмами группирования, обычно 0,7 (операция 330). Дисперсия, которая меньше пороговой,обычно показывает, что области хорошо сгруппированы, в этом случае сохраняются средние значения х,у и s (операция 340). Те из К областей, которые находятся внутри интервала, равного расстоянию D от средней точки (x, y, s), умноженному на среднее значение(я), затем удаляются из перечня областей с пиковыми значениями энтропии и выделенностью, созданного с помощью способа на фиг.2(операция 350). Расстояние D может быть любой величиной или предпочтительно подобранной величиной по отношению к дисперсии, например, может быть установлено равной величине, пропорциональной трехкратному стандартному отклонению. 10 Дисперсия (операция 330), которая больше пороговой, обычно показывает, что группирование не обнаружено, в этом случае точка может быть сохранена как изолированная точка,величина К может уменьшаться до тех пор, пока не будет достигнуто группирование, возможно до единственной точки или точка может просто оставаться в перечне выделенных точек, для того, чтобы можно было видеть, группируется ли она с чем-нибудь еще (операция 370). Операции 300-350 затем осуществляются в следующей оставшейся области с наибольшей пиковой энтропией (операция 360) до тех пор,пока все области с пиковой энтропией не подвергнутся обработке, предпочтительно, для получения взвешенного значения пиковой энтропии. Таким образом, настоящий способ группирования отвечает за влияние шума на вычисление выделенности в соответствии с фиг. 2 и позволяет рассмотреть точки с высокой энтропией, которые высококоррелированы в выделенном пространстве. Если области являются точечными областями, дисперсия может быть равной нулю. Если только две области используются при вычислении, от вычисления дисперсии можно отказаться. Фиг. 4 показывает результаты воплощения способа фиг. 2 и 3. На фиг. 4 выделенные образы согласованы между двумя изображениями 30 и 32 при использовании способа изобретения. При осуществлении способа выделенные области и масштабы были выбраны в двух изображениях 30 и 32. Образы были скоррелированы на 34, для нахождения наилучшего согласования образов между двумя изображениями. Предшествующие обработке операции могут быть использованы для уменьшения шума в оригинальном изображении до осуществления способов, описанных здесь. Диффузионные методы широко известны и применяются для такого снижения шума и сглаживания свойств, они широко цитируются как полезные для получения представлений оригинального сигнала в масштабном пространстве. Методы масштабного пространства предпринимают попытку представить оригинальный сигнал в ряде масштабов путем успешных сглаживающих операций. Хотя считается, что линейная диффузия, которая эквивалентна сглаживанию с гауссовым фильтром, создает наиболее общее сглаживание, эксперимент показал, что предпочтительными являются нелинейная изотропная диффузия и нелинейная анизотропная диффузия. В методах нелинейной изотропной диффузии и нелинейной анизотропной диффузии сглаживание подбирается так, что заданные значительные края не сглаживаются. В нелинейной изотропной диффузии сглаживание взвешивается с помощью локальной градиентной функции. При нелинейной анизотропной диффузии сглаживание 11 также направлено к краям. Нелинейная анизотропная диффузия также удаляет шум на краях. Способ передачи изображения Настоящее изобретение также предлагает способ передачи изображения. Этот способ передачи изображения содержит методы, объясненные выше. В частности, методы упорядочения пикселей и определения выделенности в изображении создают способ идентификации важных областей в изображении. Такая идентификация может быть использована для идентификации частей изображения, которые предпочтительно передаются. Например, изображение может быть передано по радиолинии к мобильной радиосистеме или мобильному телефону или от них. Доступная полоса пропускания радиолинии может в существенной степени ограничивать количество данных, которые могут быть переданы от изображения. Высокоупорядоченные пиксели или наиболее выделенные области могут передаваться более часто, чем данные. Действительно,то, что передается, может быть только частью изображения, например, в ходе периодов, когда изображение быстро меняется со временем. Устройство Изобретение было описано выше с точки зрения способа. Однако изобретение также содержит устройства, функционирующие в соответствии с изобретением. Вариант реализации такого устройства иллюстрируется на фиг. 5. Устройство (500) на фиг. 5 служит для упорядочения пикселей в изображении по степеням выделенности. Устройство содержит:a) средство (510) для выделения множества областей для каждого из множества пикселей в изображении (505), причем каждая из областей имеет различный масштаб для любого отдельного пикселя из указанных с координатами х, у;b) средство (530) для вычисления значения энтропии для каждой из областей;c) средство (560) для идентификации любых областей с пиковой энтропией, причем области с пиковой энтропией представляют собой области, которые включают пиковое значение энтропии;d) средство (570) для взвешивания пикового значения энтропии каждой области с пиковой энтропией с помощью весового значения, соответствующего оценке ширины пика пикового значения энтропии;e) средство (590) для упорядочения областей с помощью взвешенных пиковых значений энтропии, тем самым - упорядочения пикселей. Также на фиг. 5 показан блок 508 "обнаружения и структуры кадра", который включает в себя камеру для сканирования изображения. Такой блок известен специалистам в данной области техники, и, следовательно, не описывается далее подробно. Устройство 520 для оцен 004910 12 ки ФПР создает функцию плотности распределения, как описывалось выше со ссылкой на способы изобретения. Изобретение также распространяется на устройство передачи изображения. Устройство передачи изображения содержит устройство,как объяснялось выше, и в основном объясняется в связи с фиг. 5. Устройство передачи изображения может выбирать выделенные области изображения для предпочтительной передачи. В частности, когда передача осуществляется через радиолинию к мобильной или портативной радиосистеме (МПР, PMR) или мобильному телефону или от них, передача может содержать только выбранные области или эти области могут передаваться более часто, чем другие области. Устройство передачи изображения может формировать часть мобильной или портативной радиосистемы (МПР) или мобильного телефона. Различные характеристические карты В основном способе и устройстве изобретения мы использовали локальное распределение величин интенсивности как дескриптор выделенности. Однако изобретение не ограничивается этим. Любая подходящая характеристическая карта может использоваться для конкретной задачи. Например, при осуществлении анализа изображений отпечатков пальцев, обычно рассматривается, что бифуркации и крайние точки выступов являются выделенными. Для этой задачи мы используем характеристическую карту граничных направлений. Невыделенные части являются такими, что состоят из линий с единым масштабом и единым доминирующим направлением. Бифуркации и крайние точки состоят из многих граничных направлений и вероятных масштабов. Вместо использования ФПР значений интенсивности мы использовали ФПР граничных направлений и масштабов. Фиг. 6 показывает наиболее выделенные части и их соответствующие масштабы или изображение отпечатков пальцев, полученное при использовании этого способа. См. также фиг. 7. Этот способ и устройство изобретения могут использовать любую подходящую характеристическую карту при определении выделенности. Согласование выделенных областей Согласование является очень общей операцией, необходимой во многих задачах машинного зрения. Например, при распознавании объектов должна быть найдена подходящая модель из базы данных объекта. Это в основном делается путем исчерпывающих попыток проверки согласования между всеми моделями в базе данных и элементами изображения. Способ выделенности настоящего изобретения может улучшать осуществление таких задач за счет уменьшения количества данных,которые необходимо сохранять для каждой мо 13 дели. Следовательно, это уменьшает сложность поиска модели. Это осуществляется двумя основными путями:(i) уменьшается количество идентификаторов, которые необходимо сохранять, описываются только выделенные области;(ii) сохраняются соответствующие масштабы для каждой выделенной области. Следовательно, уменьшается размер пространства поиска. Это происходит потому, что мы знаем масштаб выделенных битов, поэтому нет необходимости отбирать много масштабов между моделью и изображением. Соответствующий идентификатор для задачи должен быть выбран таким образом, чтобы он был более мощным (или описательным), чем тот, который используется для характеристической карты выделенности. В примерах согласования, показанных на фиг. 4, мы использовали непосредственно вектор пиксельных величин. Он может рассматриваться как очень мощный дескриптор. В некоторых приложениях может быть более подходящим использование менее отличительных идентификаторов, таких, как высокоразмерные статистические или геометрические инварианты. Они могут обеспечивать такие преимущества, как вращательная или фотометрическая инвариантность. После выбора выделенных областей они могут быть использованы в задаче согласования. Способы и устройства, представленные здесь, были описаны способом, достаточным для того, чтобы квалифицированные специалисты легко могли подобрать доступные для приобретения технические средства и компьютерные программы, которые могут быть необходимы для осуществления любого из вариантов реализации настоящего изобретения на практике без чрезмерных экспериментов и при использовании традиционных технологий. В то время, как настоящее изобретение было описано со ссылкой на несколько конкретных вариантов реализации, описание иллюстрирует изобретение как целое и не ограничивает изобретение за счет показанных вариантов реализации. Для квалифицированных специалистов очевидно, что могут осуществляться различные модификации, не совпадающие с показанными вариантами реализации, тем не менее находящиеся в рамках изобретения. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Способ упорядочения пикселей в изображении по степеням выделенности, заключающийся в том, чтоa) определяют множество областей для каждого из множества пикселей в изображении,причем каждая из указанных областей для лю 004910 14 бого из указанных пикселей с координатами (х,у) имеет различный масштаб s,b) вычисляют значение энтропии для каждой из указанных областей,c) идентифицируют любые области с пиковой энтропией, причем области с пиковой энтропией являются областями, которые включают пиковое значение энтропии,d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии, иe) упорядочивают указанные области с помощью указанных взвешенных пиковых значений энтропии, тем самым осуществляют упорядочение указанных пикселей. 2. Способ по п.1, отличающийся тем, что при вычислении b) вычисляют оценку функции плотности распределения (ФПР) для указанных пикселей внутри каждой из указанных областей. 3. Способ по п.2, отличающийся тем, что при вычислении b) осуществляют вычисление,использующее оценку ФПР по методу окна Парзена. 4. Способ по п.2, отличающийся тем, что при вычислении b) осуществляют вычисление,использующее гистограммное накопление. 5. Способ по п.1, отличающийся тем, что дополнительно применяют усреднение по трем величинам по отношению к указанной оценке ширины пика, до осуществления указанной операции взвешивания d). 6. Способ по п.1, отличающийся тем, что при взвешивании d) осуществляют взвешивание в соответствии с величиной W(x, y, s) по формулеS(х, у, s)=Н(х, у, s)W(х, у, s),где и H(x, y, s) является локальной энтропией. 7. Способ определения выделенных областей в изображении, заключающийся в том, чтоa) определяют множество областей для каждого из множества пикселей в изображении,причем каждая из указанных областей для любого из указанных пикселей с координатами(х,у) имеет различный масштаб s,b) вычисляют значение энтропии для каждой из указанных областей,c) идентифицируют любую из указанных областей как имеющую пиковое значение энтропии,d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии, иe) для каждой выбранной области из указанных областей с пиковым значением энтропииi) выбирают по меньшей мере одну из соседних областей с пиковым значением энтропии,ii) определяют среднее значение и дисперсию каждого х, у и s для указанной выбранной области с пиковым значением энтропии и указанной по меньшей мере одной соседней области, и при этом наибольшая из указанных дисперсий не превышает заданное пороговое значение, иiii) удаляют из набора указанных областей с пиковыми значениями энтропии любые области внутри заданного интервала расстояний от указанной средней точки (x, y, s) иiv) сохраняют указанные средние значения, тем самым обозначают область, представляющую интерес. 8. Способ по п.7, отличающийся тем, что дополнительно осуществляют операцию е) в порядке указанных взвешенных пиковых значений энтропии. 9. Способ по п.7, отличающийся тем, что области являются точечными областями и дисперсия равна нулю. 10. Способ по п.7, отличающийся тем, что существуют только две области и вычисление дисперсии отбрасывают. 11. Способ передачи изображения, заключающийся в том, чтоa) определяют множество областей для каждого из множества пикселей в изображении,причем каждая из указанных областей для любого из указанных пикселей с координатами (х,у) имеет различный масштаб s,b) вычисляют значение энтропии для каждой из указанных областей,c) идентифицируют любые области с пиковой энтропией, причем области с пиковой энтропией являются областями, которые включают пиковое значение энтропии,d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии иe) упорядочивают указанные области с помощью взвешенных пиковых значений энтропии, тем самым осуществляют упорядочение указанных пикселей. 12. Способ передачи изображения, заключающийся в том, чтоa) определяют множество областей для каждого из множества пикселей в изображении,причем каждая из указанных областей для любого из указанных пикселей с координатами (х,у) имеет различный масштаб s,b) вычисляют значение энтропии для каждой из указанных областей,c) идентифицируют любую из указанных областей как имеющую пиковое значение энтропии, 004910d) взвешивают указанное пиковое значение энтропии каждой из указанных областей с пиковым значением энтропии с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии, иe) для каждой выбранной области из указанных областей с пиковым значением энтропииi) выбирают по меньшей мере одну из соседних областей с пиковым значением энтропии,ii) определяют среднее значение и дисперсию каждого х, у и s для указанной выбранной области с пиковым значением энтропии и указанной по меньшей мере одной соседней области, и при этом наибольшая из указанных дисперсий не превышает заданное пороговое значение, иiii) удаляют из набора указанных областей с пиковыми значениями энтропии любые области внутри заданного интервала расстояний от указанной средней точки (х, у, s) иiv) сохраняют указанные средние значения, тем самым обозначают область, представляющую интерес. 13. Устройство для упорядочения пикселей в изображении по степеням выделенности, содержащееa) средство для определения множества областей для каждого из множества пикселей в изображении, причем каждая из указанных областей имеет различный масштаб для любого пикселя из указанных пикселей с координатами х, у,b) средство для вычисления значения энтропии для каждой из указанных областей,c) средство для идентификации любых областей с пиковой энтропией, причем области с пиковой энтропией представляют собой области, которые включают пиковое значение энтропии,d) средство для взвешивания указанного пикового значения энтропии каждой области с пиковой энтропией с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии,e) средство для упорядочения указанных областей с помощью взвешенных пиковых значений энтропии, тем самым для упорядочения указанных пикселей. 14. Устройство для передачи изображения,содержащее устройство для упорядочения пикселей в изображении по степеням выделенности, причем устройство для упорядочения пикселей содержитa) средство для определения множества областей для каждого из множества пикселей в изображении, причем каждая из указанных областей имеет различный масштаб для любого пикселя из указанных пикселей с координатами х, у,b) средство для вычисления значения энтропии для каждой из указанных областей, 17c) средство для идентификации любых областей с пиковой энтропией, причем области с пиковой энтропией представляют собой области, которые включают пиковое значение энтропии,d) средство для взвешивания указанного пикового значения энтропии каждой области с 18 пиковой энтропией с помощью весового значения, соответствующего оценке ширины пика указанного пикового значения энтропии,e) средство для упорядочения указанных областей с помощью указанных взвешенных пиковых значений энтропии, тем самым для упорядочения указанных пикселей.

МПК / Метки

МПК: G06T 5/00

Метки: устройство, изображениях, изображения, способ, интерес, представляющих, определения, областей, передачи

Код ссылки

<a href="https://eas.patents.su/11-4910-sposob-i-ustrojjstvo-dlya-opredeleniya-oblastejj-predstavlyayushhih-interes-v-izobrazheniyah-i-dlya-peredachi-izobrazheniya.html" rel="bookmark" title="База патентов Евразийского Союза">Способ и устройство для определения областей, представляющих интерес, в изображениях и для передачи изображения</a>

Похожие патенты