Система для обнаружения флуоресценции
Формула / Реферат
1. Система для обнаружения флуоресценции, включающая
держатель образцов для удерживания нескольких отдельных образцов, по меньшей мере некоторые из которых могут содержать флуоресцентный материал;
по меньшей мере один источник возбуждения для каждого из указанных нескольких отдельных образцов, выполненный с возможностью возбуждения указанного флуоресцентного материала;
по меньшей мере один фотоприемник для каждого из указанных нескольких отдельных образцов, выполненный с возможностью обнаружения флуоресцентной эмиссии из указанного флуоресцентного материала при его возбуждении;
оптический манифольд, предназначенный для удержания каждого источника возбуждения и каждого фотоприемника во взаимодействии с держателем образцов таким образом, чтобы приведение в действие каждого источника возбуждения возбуждало любой указанный флуоресцентный материал в соответствующем образце и могло быть обнаружено соответствующим фотоприемником.
2. Система по п.1, в которой оси указанного по меньшей мере одного источника возбуждения и соответствующего по меньшей мере одного фотоприемника не совпадают, так что указанные по меньшей мере один источник возбуждения и по меньшей мере один фотоприемник задают ход луча от источника возбуждения к образцу и далее к соответствующему по меньшей мере одному фотоприемнику.
3. Система по п.1, в которой угловое расхождение между осями каждого источника возбуждения и соответствующего фотоприемника составляет 7°.
4. Система по п.1, дополнительно включающая усилитель, соединенный с каждым из фотоприемников.
5. Система по п.4, в которой каждый из усилителей имеет регулируемый коэффициент усиления.
6. Система по п.1, в которой яркость источника возбуждения пропорциональна приложенному напряжению и которая дополнительно содержит регулятор напряжения для каждого из источников возбуждения.
7. Система по п.1, в которой каждый из фотоприемников включает лавинный приемник.
8. Система по п.1, дополнительно включающая контроллер для последовательной передачи данных от фотоприемников в регистрирующее устройство.
9. Система по п.1, в которой держатель образцов выполнен с возможностью удержания пробирок с образцами.
10. Система по п.1, в которой держатель образцов включает лунки для удержания образцов.
11. Система по п.1, в которой фотоприемники включают фоторезистор на основе сульфида кадмия с высоким импедансом и которая дополнительно содержит гасящий резистор с высоким импедансом для увеличения электрического сигнала.
12. Система по п.11, дополнительно содержащая фильтрующий конденсатор для ослабления электронных радиочастотных помех.
13. Система для обнаружения флуоресценции, содержащая
держатель образцов для удерживания нескольких отдельных образцов;
источники возбуждения, по одному для каждого из указанных нескольких отдельных образцов;
фотоприемники, по одному для каждого из указанных нескольких отдельных образцов;
оптический манифольд, выполненный с возможностью удержания источников возбуждения или фотоприемников во взаимодействии с держателем образцов, причем упомянутый держатель образцов выполнен с возможностью удержания соответственно фотоприемников или источников возбуждения так, чтобы приведение в действие каждого источника возбуждения возбуждало любой флуоресцентный материал в соответствующем образце и могло быть обнаружено соответствующим фотоприемником.
14. Система по п.13, в которой оптический манифольд содержит источники возбуждения, а держатель образцов содержит фотоприемники.
15. Система по п.13, в которой оптический манифольд содержит фотоприемники, а держатель образцов содержит источники возбуждения.
16. Система по п.13, дополнительно содержащая усилитель, соединенный с каждым из фотоприемников.
17. Система по п.16, в которой каждый из усилителей имеет регулируемый коэффициент усиления.
18. Система по п.13, в которой яркость источника возбуждения пропорциональна приложенному напряжению и которая дополнительно содержит регулятор напряжения для каждого из источников возбуждения.
19. Система по п.13, в которой каждый из фотоприемников содержит лавинный приемник.
20. Система по п.13, дополнительно включающая контроллер для последовательной передачи данных от фотоприемников в регистрирующее устройство.
21. Система по п.13, в которой держатель образцов выполнен с возможностью удержания пробирок с образцами.
22. Система по п.13, в которой держатель образцов содержит лунки для содержания образцов.
23. Система по п.13, в которой фотоприемники включают фоторезистор на основе сульфида кадмия с высоким импедансом и которая дополнительно содержит гасящий резистор с высоким импедансом для увеличения электрического сигнала.
24. Система по п.13, дополнительно содержащая фильтрующий конденсатор для ослабления электронных радиочастотных помех.
25. Система для обнаружения флуоресценции, содержащая
держатель образцов для удерживания нескольких отдельных образцов;
источники возбуждения, по одному для каждого из указанных нескольких отдельных образцов;
фотоприемники, по одному для каждого из указанных нескольких отдельных образцов;
держатель образцов, выполненный с возможностью удерживания указанных источников возбуждения и фотоприемников так, чтобы приведение в действие каждого источника возбуждения возбуждало любой флуоресцентный материал в соответствующем образце и могло быть обнаружено соответствующим фотоприемником.
26. Система по п.25, в которой фотоприемники включают фоторезистор на основе сульфида кадмия с высоким импедансом и которая дополнительно содержит гасящий резистор с большим импедансом для увеличения электрического сигнала.
27. Система по п.25, дополнительно содержащая фильтрующий конденсатор для ослабления электронных радиочастотных помех.
28. Способ обнаружения флуоресценции в нескольких образцах, согласно которому
берут несколько отдельных образцов, содержащих флуоресцентный материал;
обеспечивают каждый из указанных нескольких отдельных образцов источником возбуждения для возбуждения указанного флуоресцентного материала и фотоприемником для обнаружения флуоресцентной эмиссии из указанного флуоресцентного материала при его возбуждении с использованием системы для обнаружения флуоресценции по любому из пп.1-27;
приводят в действие каждый источник возбуждения и
измеряют выходной сигнал каждого фотоприемника.
29. Способ флуоресцентного отслеживания амплификации с использованием полимеразной цепной реакции, согласно которому
берут черную непрозрачную низкофлуоресцентную пробирку для образца;
осуществляют полимеразную цепную реакцию и
используют систему для обнаружения флуоресценции по любому из пп.1-27 для отслеживания флуоресцентной эмиссии в ходе полимеразной цепной реакции образца в упомянутой пробирке.
Текст
СИСТЕМА ДЛЯ ОБНАРУЖЕНИЯ ФЛУОРЕСЦЕНЦИИ Бикмор Уильям Д. Дж., Робертс Дэнверн Рэй (US) Представитель: Описаны устройство и способы для возбуждения и обнаружения флуоресценции в образцах. Один из вариантов осуществления устройства включает держатель для удержания образцов, оптический манифольд, содержащий источник возбуждения и/или фотоприемник для каждого из образцов. В другом варианте осуществления оптический манифольд содержит только источник возбуждения или только фотоприемник, соответственно закрепленный на держателе образца. Данная система обеспечивает быстрое возбуждение и измерение флуоресценции без применения подвижных частей и без оптомеханических или электронных помех. Данная система демонстрирует исключительно хорошее отношение сигнал/шум, которое позволяет ей регистрировать очень малые различия в уровнях флуоресценции. 013886 Область техники, к которой относится изобретение Настоящее изобретение относится к способам и устройствам для возбуждения флуоресцентного материала и обнаружения флуоресценции в образце. Уровень техники Для выполнения качественных и количественных измерений были разработаны различные оптические системы обнаружения. Одна из известных систем использует флуоресцентные соединения в качестве меток, связанных с целями, такими как продукты амплификации полимеразной цепной реакции. Известен ряд химических соединений, которые флуоресцируют при освещении светом с подходящей частотой возбуждения. Например, флуоресцеин, который возбуждают светом с длиной волны около 490 нм,испускает свет с длиной волны около 520 нм. Разница между длинами волн возбуждения и эмиссии позволяет наблюдать и измерять флуоресценцию качественно или количественно на длине волны эмиссии. В одной из стандартных систем для снятия данных о флуоресценции свет проходит через полосовой фильтр, пропускающий свет с длиной волны возбуждения, через образец, через второй полосовой фильтр, пропускающий свет с длиной волны эмиссии, и попадает на примник. В этой классической системе несколько образцов по очереди помещают в положение для последовательного снятия данных, например, с применением карусельного механизма. Для ускорения процесса разрабатывали альтернативные пошаговые системы, как, например, в патенте США 6015674, или объединяли несколько светоизлучающих диодов с сетью оптических волноводов для одновременного выполнения нескольких тестов,как, например, в патенте США 6597450. Однако при использовании такие системы производят оптико-механический шум, который уменьшает чувствительность системы, а измерение всех образцов отнимает много времени, которое необходимо для перемещения головки оптической системы к образцам или перемещения образцов к головке. Кроме того, в волоконно-оптических системах имеет место ослабление сигнала, обусловленное использованием волоконной оптики, что также уменьшает чувствительность. Сущность изобретения Настоящее изобретение предлагает устройство и способы для возбуждения флуоресценции в образцах и е обнаружения. В одном из вариантов осуществления для удержания образцов предложен держатель образца, а также оптический манифольд, содержащий отдельный источник возбуждения и отдельный фотоприемник для каждого из образцов. Ещ в одном варианте осуществления оптический манифольд содержит только источник возбуждения, а фотоприемник объединен с держателем. Ещ в одном варианте осуществления оптический манифольд содержит только фотоприемник, а источник возбуждения объединен с держателем. Ещ один вариант осуществления не предполагает наличия оптического манифольда, а источник возбуждения и фотоприемник размещены в держателе. Настоящее изобретение обеспечивает возможность быстрого возбуждения и измерения флуоресценции без применения подвижных частей и при отсутствии оптомеханических или электронных помех. Оно демонстрирует исключительно хорошее отношение сигнал/шум, которое позволяет регистрировать очень малые различия в уровнях флуоресценции. Эти и другие особенности настоящего изобретения станут более очевидными из нижеследующего описания и приложенной формулы или в результате практического применения настоящего изобретения в том виде, как оно изложено далее. Краткое описание чертежей Для дальнейшего прояснения вышеупомянутых и других преимуществ и признаков настоящего изобретения представлено более подробное описание изобретения в отношении конкретных вариантов его осуществления, которые проиллюстрированы на приложенных чертежах. Следует отметить, что эти чертежи изображают только типичные варианты осуществления настоящего изобретения и потому не могут ограничивать его объм. Ниже изобретение описано и объяснено более конкретно и с дополнительными подробностями с помощью сопроводительных чертежей, на которых на фиг. 1 схематически представлен один из вариантов осуществления настоящего изобретения,включающий оптический манифольд, держатель образца и фотоприемник; на фиг. 2 - ещ один вариант, включающий оптический манифольд, держатель образца и фотоприемник; на фиг. 3 - еще один вариант, включающий оптический манифольд, держатель образца и фотоприемник; на фиг. 4 - ещ один вариант, включающий оптический манифольд, держатель образца и фотоприемник; на фиг. 5 - держатель образца с вмонтированными в него источником возбуждения и фотоприемником; на фиг. 6 - держатель образца, имеющий конфигурацию традиционного планшета на 96 лунок, и оптический манифольд, включающий источник возбуждения и фотоприемник, связанные с каждым из 96 держателей образца; на фиг. 7 - пример выполнения контроллера в соединении с оптическим манифольдом, держателем-1 013886 образца и фотоприемником; на фиг. 8 - ещ один пример выполнения контроллера в соединении с оптическим манифольдом,держателем образца и фотоприемником; на фиг. 9 - еще один вариант предлагаемой системы; на фиг. 10 графически представлена яркость флуоресценции в течение первых семи циклов полимеразной цепной реакции; на фиг. 11 - яркость флуоресценции в течение первых семи циклов термоциклера полимеразной цепной реакции при отсутствии амплификации ДНК; на фиг. 12 - яркость флуоресценции шума в течение первых семи циклов полимеразной цепной реакции при применении стандартной пробирки для образца в сравнении с черной непрозрачной пробиркой для полимеразной цепной реакции. Настоящее изобретение предлагает оптическую систему для измерения низких уровней флуоресценции в одиночных образцах или в наборе образцов, например в стандартном планшете на 96 лунок. Одна из особенностей изобретения состоит в отсутствии механического перемещения или разделения оптических компонентов во время возбуждения и/или эмиссии, что обеспечивает очень быстрое счтывание без потери чувствительности из-за оптомеханического перемещения. Один из вариантов настоящего изобретения представлен на фиг. 1, которая иллюстрирует одну из конфигураций для практического применения настоящего изобретения. Как показано на фиг. 1, оптический манифольд 20 расположен вблизи пробирки 22 для образца, закреплнной в подложке 38 А с лункой для образца. Пробирка 22 содержит образец 24, который может содержать вещество для качественного или количественного исследования с применением флуоресценции. Манифольд 20 снабжн источником 26 возбуждения, который генерирует свет на частоте возбуждения. Полосовой фильтр 28 диапазона возбуждения пропускает свет с частотой возбуждения. Источник 26 и фильтр 28 размещены так, чтобы свет с частотой возбуждения попадал на образец 24. Над образцом 24 размещен полосовой фильтр 30 диапазона эмиссии так, чтобы на него попадала эмиссия из флуоресцентного материала образца. Подходящий фотоприемник 32 принимает свет, проходящий через фильтр 30. Могут быть применены и другие конфигурации, однако, важно, чтобы оптические оси источника возбуждения и фотоприемника не совпадали для формирования хода луча, который первоначально попадает на целевую жидкость в лунке полимеразной цепной реакции. Отклонение в 7 было признано подходящим. Тем не менее, для специалиста, ознакомленного с данным описанием, очевидно, что возможны и другие конфигурации. На фиг. 2 проиллюстрированы различные способы закрепления образца. В отличие от фиг. 1, которая иллюстрирует использование пробирки для образца, фиг. 2 иллюстрирует использование лунки 34, в которой можно закрепить образец подходящего объема. С учтом вышесказанного для специалиста очевидно, что вместо лунки могут быть применены и другие средства. На фиг. 3 представлено альтернативное геометрическое расположение компонентов, представленных на фиг. 1. На фиг. 3 манифольд 36 А поддерживает фотоприемник 32 и полосовой фильтр 30 над лункой 22 для образца, а на подложке 38 В с лункой для образца закреплены источник 26 возбуждения и полосовой фильтр 28 диапазона возбуждения. Фиг. 4 отличается от фиг. 3 тем, что источник возбуждения и полосовой фильтр диапазона возбуждения размещены в манифольде 36 В, а полосовой фильтр 30 диапазона эмиссии и фотоприемник 32 размещены в подложке 38 С с лункой для образца. На фиг. 5 представлен еще один вариант осуществления настоящего изобретения, в котором отсутствует отдельный оптический манифольд. На фиг. 5 проиллюстрирован один из способов монтирования источника 26 возбуждения и фотоприемника 32 в подложке 38D с лункой для образца. Как и другие варианты осуществления, вариант, представленный на фиг. 5, может также включать полосовой фильтр 26 диапазона возбуждения и полосовой фильтр 30 диапазона эмиссии. Исходя из стоимости монтирования этих компонентов в держателе образца предпочтительно, чтобы блок держателя образца был выполнен с возможностью многократного использования, а для удобства при удалении образцов предпочтительно,чтобы держатель образца был выполнен с возможностью прима пробирки 22 для образца, а не представлял собой лунки или другие неудаляемые мкости для образца. На фиг. 5 источник возбуждения и фотоприемник изображены на одной линии друг с другом. Для специалиста очевидно, что возможны и другие конфигурации, которые также могут обеспечить преимущества настоящего изобретения. Подходящие источники возбуждения включают светоизлучающий диод и лазерный диод. В данном случае предпочтительно, чтобы источник возбуждения обеспечивал высокую яркость, предпочтительно дающую силу света в пределах от около 7000 до 25000 миликандел. Также предпочтительно, чтобы дисперсия луча источника возбуждения составляла менее 20 для обеспечения эффективной эмиссии без потребности в конденсорной оптике. Подходящие фотоприемники включают фоторезисторы на основе сульфида кадмия, PIN-диоды, фототранзисторы или другие устройства, способные обнаруживать свет на частоте возбуждения.-2 013886 Специалистам известно, что полосовой фильтр можно не использовать, если вместо него для подавления света нежелательной частоты предусмотреть другие средства или если источник света представляет собой монохроматический источник с требуемой длиной волны. Далее можно было бы ввести дополнительные средства, такие как фокусирующая оптика, но, как было установлено для конфигураций, описанных выше, в специальной оптике обычно нет необходимости. На фиг. 1-5 представлены различные конфигурации оптических компонентов в связи с одиночным образцом. Одно из преимуществ настоящего изобретения состоит в возможности работать с большим количеством образцов одновременно. На фиг. 6 проиллюстрировано применение основной конфигурации, показанной на фиг. 1, для каждой лунки с образцом в стандартном планшете 40 на 96 лунок. Как показано на фиг. 6, это обеспечивают посредством манифольда 42, снабжнного 96 отдельными комбинациями из источника 26 возбуждения, полосового фильтра 28 диапазона возбуждения, полосового фильтра 30 диапазона эмиссии и фотоприемника 32, которые соответствуют 96 лункам для образцов. Конфигурация, показанная на фиг. 6, пригодна для применения в соединении со считывающими устройствами полимеразной цепной реакции, твердофазного иммуноферментного анализа или в других случаях, требующих работы со множеством образцов. Конфигурация, представленная на фиг. 6, способна снять данные с каждой из 96 лунок стандартного планшета на 96 лунок в течение всего нескольких миллисекунд без каких-либо оптомеханичесих или электронных помех. Указанный манифольд отличается высокой прочностью и высокой надежностью, что делает его пригодным для оборудования переносной лаборатории. На фиг. 7 схематично представлен вариант управляющей системы, которая содержит источник 44 питания постоянного тока, питающий источники 26 возбуждения. Для управления каждым из источников 26 предусмотрено по меньшей мере одно реле 46. Компьютер, программируемый логический контроллер (не показан), или другой контроллер включает и выключает источники возбуждения. В некоторых конфигурациях может быть применено одиночное реле 46 для активизации всех источников возбуждения одновременно, или могут быть применены отдельные реле для каждого из источников возбуждения. Схематическое изображение компонентов оптического возбуждения также представлено на фиг. 7,на которой компоненты обозначены теми же номерами: источники 26 возбуждения, показанные в соединении с полосовыми фильтрами 28 диапазона возбуждения, направляют свет возбуждения в пробирки 22 с образцами. Полосовые фильтры 30 диапазона эмиссии и фотоприемники 32 принимают свет флуоресцентной эмиссии от образцов. Данные из фотоприемников предпочтительно поступают на соответствующие усилители 48, которые усиливают сигналы от соответствующего фотоприемника. Предположим,что типичный фотоприемник производит аналоговый сигнал. В таком случае предпочтительно, чтобы каждый усилитель имел регулируемый коэффициент усиления для обеспечения возможности калибровки, чтобы гарантировать, что каждая из комбинаций фотоприемника и усилителя предоставляет для последующего анализа сравнимые данные с учтом различий, которые могут существовать между компонентами системы в режиме калибровки. Сигналы от усилителей 48 поступают в мультиплексирующее устройство 50, которое работает в координации с синхронизирующим устройством 52 для управления переключением между входами сигналов, поступающих от различных усилителей, и посылает сигнал на аналоговый вход 54 компьютера,причем термин "компьютер" применн в широком смысле и включает программируемый логический контроллер или другое устройство, пригодное для выполнения этой функции. На фиг. 8 представлен еще один вариант управляющей системы, иллюстрирующий, что в соединении с оптическими компонентами,описанными выше, могут быть успешно применены различные управляющие системы. На фиг. 8 представлен аналоговый выход 56 компьютера, соединенный с усилителем 58, предназначенным для управления источниками 26 возбуждения. Яркость светодиодов, используемых в качестве источника возбуждения, пропорциональна приложенному напряжению. Это дает возможность с помощью компьютера или контроллера управлять интенсивностью светодиодов, используемых в качестве источника возбуждения,в зависимости от необходимой чувствительности или учитывать требования калибровки. Один из способов калибровки включает использование стандартизированного флуоресцентного материала в известной концентрации и калибровку каждого канала до тех пор, пока все каналы не будут выдавать при измерении одинаковый выходной сигнал. Чтобы выполнить такую калибровку можно применять различные подходы: например, можно отдельно настраивать коэффициенты усиления усилителей или интенсивность источника возбуждения или выполнять регулирование на компьютере. В варианте, представленном на фиг. 8, предпочтительно, чтобы в качестве фотоприемников были использованы так называемые "лавинные" приемники, которые меняют сво состояние с полностью выключенного на полностью включнное, когда яркость свечения флуоресцентного материала достигает некоторого уровня. Приложенное напряжение, необходимое для перехода фотоприемника во включнное состояние, можно использовать как меру уровня флуоресценции. Например, если переход фотопримника во включнное состояние требует относительно большого напряжения (источник возбуждения большой интенсивности), то в образце низкий уровень флуоресценции. Верно и обратное: если относительно малое напряжение приводит к активации фотоприемника, это означает, что уровень флуоресценции высок. Измерение напряжения, необходимого для перехода фотоприемника во включнное сосотоя-3 013886 ние, позволяет определить количество флуоресцентного материала в образце. Чтобы усиливать сигналы, поступающие от фотоприемников 32, могут быть успешно применены нелинейные усилители 58. Усилители 58 предпочтительно имеют регулируемый коэффициент усиления,что при ряде условий делает их более эффективными. Для отслеживания одного из входных сигналов,поступающих на вход 62 компьютера или контроллера, предназначен сдвиговый регистр 60. В этой конфигурации для переключения сдвигового регистра 60 между входами сигналов, поступающих от различных фотоприемников, может быть использован сигнал цифрового датчика 64 времени так, чтобы компьютер снимал данные со всех каналов. На фиг. 9 представлено схематичное изображение варианта осуществления малошумящей электрооптической системы с высоким усилением. Эта система показана с двумя пробирками 22 для образцов и соответствующими оптическими компонентами, хотя следует отметить, что пригодная система может включать как единственный образец, так и множество образцов. Источники 26 возбуждения и полосовые фильтры 28 диапазона возбуждения размещены так, чтобы направить излучение возбуждения на образец в пробирке 22. Полосовые фильтры 30 диапазона эмиссии показаны в комбинации с фоторезисторами 70, которые представляют собой фоточувствительные резисторы, способные обеспечивать высокое электронное усиление от мельчайших флуоресцентных фотоэмиссионных источников. При применении флуоресцеина в качестве флуоресцентного материала предпочтительно использовать фоторезистор на основе сульфида кадмия, обладающий высоким импедансом и имеющий хорошую фоточувствительность на длине волны эмиссии флуоресцеина. С фоторезистором 70 соединн гасящий резистор 72 с высоким импедансом. Такая комбинация обеспечивает получение относительно большого электрического сигнала даже при низких уровнях света. Включение фильтрующих конденсаторов 74 ослабляет электронные радиочастные помехи путм обеспечивания пути шунтирования с предотвращением усиления радиочастотного электрического шума. Линейные усилители 76 имеют регулируемый коэффициент усиления, чтобы обеспечить возможность согласования множества электрооптических схем друг с другом. Электрооптическая система, представленная на фиг. 9, снабжена источником 44 питания постоянного тока и стробирующим реле 78, которым управляет компьютер. Выходные сигналы линейных усилителей 76 преимущественно поступают на аналоговый стробирующий мультиплексор 80, который, в свою очередь, связан с цифровым стробирующим сигналом 82 селективного пропускания и с аналоговым входом 84 компьютера. Линейные усилители также обеспечивают импеданс, соответствующий аналоговому переключающему мультиплексору 80. Посредством аналогового мультиплексора все выходы линейных усилителей могут быть стробированы и опрошены каждые несколько миллисекунд управляющим компьютером, который предпочтительно представляет собой программируемый логический контроллер для применения в системе, представленной на фиг. 9. Было установлено, что применение черной непрозрачной пробирки для образца с крайне низкой флуоресценцией позволяет обнаруживать более низкий уровень флуоресцентной эмиссии, чем при использовании стандартной прозрачной пробирки. Не стремясь подвести под этот факт теоретическую базу, все же предполагаем, что малейшие изменения в стенках стандартной прозрачной пробирки, вызванные термическим воздействием, вносят вклад в изменения фоновой флуоресценции. Пробирки, которые обычно применяют в лаборатории и которые незначительно окрашены в целях идентификации, часто также обладают высоким уровнем флуоресценции, которая, как было установлено, добавляет шумы и снижает чувствительность. Вариант, представленный на фиг 9, обеспечивает такую же фоточувствительность, что и фотоэлектронный умножитель (ФЭУ). Этот вариант позволяет регистрировать малые изменения при очень низких уровнях света и не требует механического шагового механизма для снятия данных с 96 пробирок, содержащих флуоресцентный материал, в течение менее одной секунды. Другое преимущество указанного варианта состоит в том, что каждый фоторезистор занимает площадь всего примерно 99 мм, что значительно меньше площади, требуемой для ФЭУ. Еще одно преимущество указанного варианта состоит в том, что к нему приложено низкое напряжение, тогда как ФЭУ обычно требует напряжение по меньшей мере 1000 В. Ещ одно преимущество варианта, представленного на фиг. 9, состоит в возможности применять его при отслеживании амплификации с использованием полимеразной цепной реакции путем отслеживания различий в уровне флуоресценции в самом начале процесса полимеразной цепной реакции. В традиционных системах первые пять циклов полимеразной цепной реакции, как часто полагают, служат"нулевым" уровнем, потому что рост ДНК не может быть успешно обнаружен в течение этих циклов. По причине шума в традиционных системах амплификация ДНК не может быть надежно зарегистрирована до 20 цикла. Было установлено, что вариант, представленный на фиг. 9, может обнаружить положительную амплификацию ДНК между 5 и 7 циклами. В некоторых случаях раннее обнаружение амплификации ДНК позволяет использовать меньше термических циклов. На фиг. 10 проиллюстрирован люминесцентный выход флуоресцентной пробы, который максимален, когда ДНК двухспиральная, и минимален, когда ДНК односпиральная. Устойчивый рост двухспиральной ДНК отображают неуклонно растущие пики яркости в конце фаз ренатурации. На стадии дена-4 013886 турации яркость временно падает, поскольку двухспиральная ДНК преобразована обратно в односпиральную ДНК. Яркость снова растет и достигает еще более высокого уровня, поскольку происходят последовательные стадии ренатурации, и произведено больше ДНК. Данная система учитывает точные оценки скоростей биохимической реакции в процессе полимеразной цепной реакции. Знание скорости реакции в процессе полимеразной цепной реакции весьма полезно для предсказания и оптимизации процесса. Также возможны и более сложные наблюдения. Например, в течение денатурационной части цикла полимеразной цепной реакции получают логарифмические кривые падающей фотолюменисценции. Аналогично, при ренатурации наблюдают растущую по логарифмическому закону флуоресценцию. Чувствительность, которую обеспечивает применение настоящего изобретения, возможно, не будет использована в полном объеме в традиционных термоциклерах, которые применяют в практике полимеразной цепной реакции. Но настоящее изобретение будет особенно полезно в комбинации с новыми термоциклерами, описанными в находящейся на одновременном рассмотрении патентной заявке 10/991746"Быстрый термоциклер", поданной 18 ноября 2004 г., имеющей общее с настоящей заявкой правопреемника и полностью включенной в настоящую заявку. Это обусловлено тем, что длительности перехода между различными фазами традиционных термоциклеров обычно составляют около 45 с, и эти увеличенные длительности перехода ведут к сглаживанию или искажению наблюдаемых кривых. Для получения лучших результатов длительность перехода между фазами следует уменьшить предпочтительно до нескольких секунд. Кроме того, традиционные термоциклеры подвержены существенному тепловому шуму, который уменьшен в термоциклерах в соответствии с заявкой "Быстрый термоциклер". На фиг. 11 представлены данные полимеразной цепной реакции без амплификации. Огибающая пиков демонстрирует неизменное снижение по причине собственного затухания флуоресцентной пробы при е постоянной освещенности. Такое же затухание наблюдают при освещении химически чистого флуоресцеина, не прикреплнного к пробе. Скорость затухания, согласно наблюдениям, составляет около 0,02% в секунду при непрерывном освещении мощным источником возбуждающего света. Затухание яркости флуоресценции, которое наблюдают в настоящем изобретениия, противодействует увеличению яркости, обусловленному увеличением ДНК. Это явление полезно для обобщения изменений в люминесценции при росте ДНК и отсутствии такового. От первого цикла до третьего цикла затухание флуоресцентного сигнала может уменьшать яркость образца на величину, большую, чем увеличение яркости,связанной с ростом ДНК. Однако в 4 цикле и далее увеличение яркости, связанной с ростом ДНК, обеспечит рост полной яркости. После этого двойственная природа роста ДНК преодолеет затухание флуоресцентного сигнала. На фиг. 12 представлено сравнение результатов применения прозрачных пробирок из термопластика и черных непрозрачных пробирок. Фоновый сигнал в случае стандартных прозрачных пробирок для образца может быть почти полностью устранен при применении черной непрозрачной пробирки. Когда фоновую флуоресценцию сводят к минимуму, усиление электрооптического сигнала может быть больше, поскольку улучшено отношение сигнал/шум. Пробирки с ультранизкой фоновой флуоресценцией очень полезны для уменьшения шума в приложениях, требующих обнаружения изменений при низком уровне флуоресценции. Обнаружение низкого уровня флуоресценции полезно при проведении качественного обнаружения полимеразной цепной реакции потенциально вредных биологических агентов, когда время обнаружения является важным фактором. Время, необходимое для статистически достоверного обнаружения, уменьшено с часа или более при применении традиционных флуоресцентных систем для обнаружения полимеразной цепной реакции до 15 мин или менее при применении настоящего изобретения в комбинации с быстрым термоциклером, описанным в вышеуказанной заявке, находящейся на одновременном рассмотрении. Настоящее изобретение предлагает чрезвычайно полезную и быструю флуоресцентную оптическую считывающую систему, способную опрашивать каждую из 96 лунок на планшете в течение всего нескольких миллисекунд, не содержащую подвижных частей и не создающую оптомеханических или электронных помех. Система обеспечивает очень высокое отношение сигнал/шум, что позволяет применять ее для регистрации весьма малых различий в уровне флуоресценции. Компактность и значительная прочность представленной системы позволяют применять ее не только в лабораторных приложениях, но также и в портативном оборудовании, предназначенном для применения в полевых условиях. Настоящее изобретение может быть также реализовано в других конкретных формах без отступления от его сущности. Описанные варианты осуществления следует считать во всех отношениях исключительно иллюстративными, а не ограничительными. Таким образом, объем настоящего изобретения ограничен приведнной формулой, а не предшествующим описанием. Все изменения в пределах признаков формулы и эквивалентных им признаков должны быть включены в е объем. ФОРМУЛА ИЗОБРЕТЕНИЯ 1. Система для обнаружения флуоресценции, включающая держатель образцов для удерживания нескольких отдельных образцов, по меньшей мере некоторые-5 013886 из которых могут содержать флуоресцентный материал; по меньшей мере один источник возбуждения для каждого из указанных нескольких отдельных образцов, выполненный с возможностью возбуждения указанного флуоресцентного материала; по меньшей мере один фотоприемник для каждого из указанных нескольких отдельных образцов,выполненный с возможностью обнаружения флуоресцентной эмиссии из указанного флуоресцентного материала при его возбуждении; оптический манифольд, предназначенный для удержания каждого источника возбуждения и каждого фотопримника во взаимодействии с держателем образцов таким образом, чтобы приведение в действие каждого источника возбуждения возбуждало любой указанный флуоресцентный материал в соответствующем образце и могло быть обнаружено соответствующим фотоприемником. 2. Система по п.1, в которой оси указанного по меньшей мере одного источника возбуждения и соответствующего по меньшей мере одного фотоприемника не совпадают, так что указанные по меньшей мере один источник возбуждения и по меньшей мере один фотопримник задают ход луча от источника возбуждения к образцу и далее к соответствующему по меньшей мере одному фотопримнику. 3. Система по п.1, в которой угловое расхождение между осями каждого источника возбуждения и соответствующего фотоприемника составляет 7. 4. Система по п.1, дополнительно включающая усилитель, соединнный с каждым из фотоприемников. 5. Система по п.4, в которой каждый из усилителей имеет регулируемый коэффициент усиления. 6. Система по п.1, в которой яркость источника возбуждения пропорциональна приложенному напряжению и которая дополнительно содержит регулятор напряжения для каждого из источников возбуждения. 7. Система по п.1, в которой каждый из фотоприемников включает лавинный приемник. 8. Система по п.1, дополнительно включающая контроллер для последовательной передачи данных от фотоприемников в регистрирующее устройство. 9. Система по п.1, в которой держатель образцов выполнен с возможностью удержания пробирок с образцами. 10. Система по п.1, в которой держатель образцов включает лунки для удержания образцов. 11. Система по п.1, в которой фотоприемники включают фоторезистор на основе сульфида кадмия с высоким импедансом и которая дополнительно содержит гасящий резистор с высоким импедансом для увеличения электрического сигнала. 12. Система по п.11, дополнительно содержащая фильтрующий конденсатор для ослабления электронных радиочастотных помех. 13. Система для обнаружения флуоресценции, содержащая держатель образцов для удерживания нескольких отдельных образцов; источники возбуждения, по одному для каждого из указанных нескольких отдельных образцов; фотоприемники, по одному для каждого из указанных нескольких отдельных образцов; оптический манифольд, выполненный с возможностью удержания источников возбуждения или фотоприемников во взаимодействии с держателем образцов, причм упомянутый держатель образцов выполнен с возможностью удержания соответственно фотоприемников или источников возбуждения так, чтобы приведение в действие каждого источника возбуждения возбуждало любой флуоресцентный материал в соответствующем образце и могло быть обнаружено соответствующим фотоприемником. 14. Система по п.13, в которой оптический манифольд содержит источники возбуждения, а держатель образцов содержит фотоприемники. 15. Система по п.13, в которой оптический манифольд содержит фотоприемники, а держатель образцов содержит источники возбуждения. 16. Система по п.13, дополнительно содержащая усилитель, соединнный с каждым из фотоприемников. 17. Система по п.16, в которой каждый из усилителей имеет регулируемый коэффициент усиления. 18. Система по п.13, в которой яркость источника возбуждения пропорциональна приложенному напряжению и которая дополнительно содержит регулятор напряжения для каждого из источников возбуждения. 19. Система по п.13, в которой каждый из фотоприемников содержит лавинный приемник. 20. Система по п.13, дополнительно включающая контроллер для последовательной передачи данных от фотоприемников в регистрирующее устройство. 21. Система по п.13, в которой держатель образцов выполнен с возможностью удержания пробирок с образцами. 22. Система по п.13, в которой держатель образцов содержит лунки для содержания образцов. 23. Система по п.13, в которой фотоприемники включают фоторезистор на основе сульфида кадмия с высоким импедансом и которая дополнительно содержит гасящий резистор с высоким импедансом для увеличения электрического сигнала. 24. Система по п.13, дополнительно содержащая фильтрующий конденсатор для ослабления элек-6 013886 тронных радиочастотных помех. 25. Система для обнаружения флуоресценции, содержащая держатель образцов для удерживания нескольких отдельных образцов; источники возбуждения, по одному для каждого из указанных нескольких отдельных образцов; фотоприемники, по одному для каждого из указанных нескольких отдельных образцов; держатель образцов, выполненный с возможностью удерживания указанных источников возбуждения и фотоприемников так, чтобы приведение в действие каждого источника возбуждения возбуждало любой флуоресцентный материал в соответствующем образце и могло быть обнаружено соответствующим фотоприемником. 26. Система по п.25, в которой фотоприемники включают фоторезистор на основе сульфида кадмия с высоким импедансом и которая дополнительно содержит гасящий резистор с большим импедансом для увеличения электрического сигнала. 27. Система по п.25, дополнительно содержащая фильтрующий конденсатор для ослабления электронных радиочастотных помех. 28. Способ обнаружения флуоресценции в нескольких образцах, согласно которому берут несколько отдельных образцов, содержащих флуоресцентный материал; обеспечивают каждый из указанных нескольких отдельных образцов источником возбуждения для возбуждения указанного флуоресцентного материала и фотоприемником для обнаружения флуоресцентной эмиссии из указанного флуоресцентного материала при его возбуждении с использованием системы для обнаружения флуоресценции по любому из пп.1-27; приводят в действие каждый источник возбуждения и измеряют выходной сигнал каждого фотоприемника. 29. Способ флуоресцентного отслеживания амплификации с использованием полимеразной цепной реакции, согласно которому берут черную непрозрачную низкофлуоресцентную пробирку для образца; осуществляют полимеразную цепную реакцию и используют систему для обнаружения флуоресценции по любому из пп.1-27 для отслеживания флуоресцентной эмиссии в ходе полимеразной цепной реакции образца в упомянутой пробирке.
МПК / Метки
МПК: G01N 21/64
Метки: обнаружения, флуоресценции, система
Код ссылки
<a href="https://eas.patents.su/11-13886-sistema-dlya-obnaruzheniya-fluorescencii.html" rel="bookmark" title="База патентов Евразийского Союза">Система для обнаружения флуоресценции</a>
Предыдущий патент: Система защиты персонального устройства от несанкционированного доступа к нему
Следующий патент: Устройство и способ фиксации окна
Случайный патент: Биохимический синтез 1,4-бутандиамина